• Title/Summary/Keyword: Energy balance model

Search Result 362, Processing Time 0.024 seconds

An Analysis of Heat Losses from Receivers for a Multifaceted Parabolic Solar Collector (접시형 태양열 집광시스템용 흡수기의 열손실 해석)

  • Ryu, S.Y.;Seo, T.B.;Kang, Y.H.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.61-73
    • /
    • 2000
  • Heat losses from receivers for a dish-type solar energy collecting system are numerically investigated. The analytical method for predicting conductive heat loss from a cavity receiver is used. The Stine and McDonald Model is used to estimate convective heat loss. Two kinds of techniques for the radiation analysis are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. Based on the heat loss analysis, the performance of two different receivers for multifaceted parabolic solar collectors with several flat facets can be estimated, and the optimal facet size is obtained.

  • PDF

Estimation of the Heat Budget Parameter in the Atmospheric Boundary Layer considering the Characteristics of Soil Surface (지표면의 특성을 고려한 대기경계층내의 열수지 parameter 추정 -열수지 parameter를 이용한 중규모 순환의 수치예측-)

  • 이화운;정유근
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.727-738
    • /
    • 1996
  • An one dimensional atmosphere-canopy-soil interaction model is developed to estimate of the heat budget parameter in the atmospheric boundary layer. The canopy model is composed of the three balance equations of energy, temperature, moisture at ground surface and canopy layer with three independent variables of Tf(foliage temperature), Tg(ground temperature), and qg(ground specific humidity). The model was verilied by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HAPEX-MOBILHY experiment. Also we applied this model in two dimensional land-sea breeze circulation. According to the results of this study, surface characteristics considering canopy acted importantly upon the simulation of meso-scale circulation. The factors which used in the numerical experiment are as follows ; the change for a sort of soil(sand and peat), the change for shielding factor, and the change for a kind of vegetation.

  • PDF

Application of Dynamic Model for Steam Turbine and its Parameter Estimation in a Fossil Fired Power Plant

  • Choi, Inkyu;Woo, Joohee;Kim, Byoungchul;Son, Gihun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.409-413
    • /
    • 2016
  • The 500 MW rated steam turbine model in coal fired power plant is developed to be used for validation and verification of controller rather than for the education of operator. The valve, steam turbine, reheater and generator are modeled and integrated into the simulator. And the data from the plant heat balance diagram are used for estimation of the model parameters together with actual operating data. It is found that the outputs of model such as pressure, temperature and speed are similar to the operating ones. So, it is expected that the developed model will play a very big role in controller development.

Reassessment on SEBAL Algorithm and MODIS Products

  • Uranchimeg, Sumiya;Kwon, Hyun-Han;Kim, Hyun-Mook;Kim, Yun-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.230-230
    • /
    • 2016
  • Hydrological modeling is a very complex task dealing with multi-source of data, but it can be potentially benefited from recent improvements and developments in remote sensing. The estimation of actual land surface evapotranspiration (ET), an important variable in water management, has become possible based entirely on satellite data. This study adopted a Surface Energy Balance Algorithm for Land (SEBAL) with the use of MODerate Resolution Imaging Spectrometer (MODIS) satellite products. The SEBAL model is one of the commonly used approach for the ET estimation. A primary advantage of the SEBAL model is rather its minimum requirement for ground-based weather data. The MODIS provides ET (MOD16) product that is based on the Penman-Monteith equation. This study aims to further develop the SEBAL model by employing a more rigorous parameterization scheme including the estimation of uncertainty associated with parameter and model selection in regression model. Finally, the proposed model is compared with the existing approaches and comprehensive discussion is then provided.

  • PDF

Analysis of FRP-Confined Concrete According to Lateral Strain History (횡변형률 이력에 근거한 FRP-구속 콘크리트의 해석)

  • Cho, Soon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.201-204
    • /
    • 2008
  • The proposed method, capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (Fiber Reinforced Polymers) composites in a rational manner, is based on the fact that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure. The elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. This procedure enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods.

  • PDF

A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application (건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

Delamination of non-linear viscoelastic beams under bending in the plane of layers

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.297-313
    • /
    • 2023
  • This paper deals with delamination analysis of non-linear viscoelastic multilayered beam subjected to bending in the plane of the layers. For this purpose, first, a non-linear viscoelastic model is presented. In order to take into account the non-linear viscoelastic behaviour, a non-linear spring and a non-linear dashpot are assembled in series with a linear spring connected in parallel to a linear dashpot. The behaviours of the non-linear spring and dashpot are described by applying non-linear stress-strain and stress-rate of strain relationships, respectively. The constitutive law of the model is derived. Due to the non-linear spring and dashpot, the constitutive law is non-linear. This law is used for describing the time-dependent mechanical behaviour of the beam under consideration. The material properties involved in the constitutive law vary along the beam length due to the continuous material inhomogeneity of the layers. Solution of the strain energy release rate for the delamination is obtained by analyzing the balance of the energy with considering of the non-linear viscoelastic behaviour. The strain energy release rate is found also by using the complementary strain energy for verification. A parametric study is carried-out by using the solution obtained. The solutions derived and the results obtained help to understand the time-dependent delamination of non-linear viscoelastic beams under loading in the plane of layers.

A Study of the Momentum Balance in the High-Latitude Lower Thermosphere Based on the Ncar-Tiegcm: Dependence on the Interplanetary Magnetic Field (IMF)

  • Kwak, Young-Sil;Ahn, Byung-Ho;Arthur D. Richmond
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.70-70
    • /
    • 2004
  • Lower thermospheric winds are forced primarily by non-uniform solar heating, atmospheric tides and other waves coming from below, and energy and momentum forcing associated with high-latitude magnetosphere-ionosphere coupling, particularly ion drag and Joule heating. To understand the physical processes that control the thermospheric dynamics, we quantify the momentum forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system and examine the resulting momentum balance with the aid of the Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) developed by the National Center for Atmospheric Research. (omitted)

  • PDF

Noninvasive Monitoring of ion Energy Distribution in Plasma Etching (플라즈마 식각 공정 시 비 침투적 방법으로 이온에너지 분포 측정 연구)

  • Oh, Se-Jin;Chung, Chin-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2069-2071
    • /
    • 2005
  • 본 연구에서는 플라즈마 식각 공정 시 식자률, 선택비, wafer 손상등과 중요한 관련이 있는 이온 에너지 분포(IED)를 측정하기 위해서 챔버 내에 직접적으로 분석기를 설치하지 않고 챔버 외부에서 비 침투적(noninvasive)인 방법을 사용하여 측정하였다. 이 방범은 신호선 중 한 곳에 측정 점을 잡기 위한 연결 장치만 필요하며 그곳에서의 전안 신호와 전류 신호를 오실로스코프에서 측정한 후 미리 얻어진 챔버 구조 모델링 계수 등을 통해 실제 바이어스 전극에 걸리는 전압 및 전극에서 플라즈마로 흐르는 전류를 유추한다. 전압 및 전류측정값과 power balance와 particle balance를 적용하여 얻은 플라즈마 특성 상태 변수들을 사용하여 oscillating step sheath model을 기반으로 한 분석 프로그램을 통해 실시간 이온에너지 분포 결과를 얻었다. 실제 공정 시 바이어스 주파수 변화, 바이어스 파워 변화, 소스 파워변화 조건 등에 따른 이온 에너지 분포 측정 및 분석을 통해 비 침투적측정방법 적용의 가능성과 장점을 확인하였다.

  • PDF

Modeling of a Pulverized Coal Combustion With Applying WSGGM (희체가스 가중합산모델을 적용한 미분탄 연소의 해석)

  • Yu, Myoung-Jong;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.155-163
    • /
    • 1999
  • A numerical study for simulating a swirling pulverized coal combustion in axisymmetric geometry is done here by applying the weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard ${\kappa}-{\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase for soot. The eddydissipation model is employed for the reaction rate for gaseous mixture, and the single-step first-order reaction model for the devolatilization process for coal. By comparing the numerical results with experimental ones, the models used here are confirmed and found to be one of good alternatives for simulating the combustion as well as radiative characteristics.

  • PDF