• Title/Summary/Keyword: Energy and information transfer

Search Result 407, Processing Time 0.037 seconds

Simultaneous Information and Power Transfer for Multi-antenna Primary-Secondary Cooperation in Cognitive Radio Networks

  • Liu, Zhi Hui;Xu, Wen Jun;Li, Sheng Yu;Long, Cheng Zhi;Lin, Jia Ru
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.941-951
    • /
    • 2016
  • In this paper, cognitive radio and simultaneous wireless information and power transfer (SWIPT) are effectively combined to design a spectrum-efficient and energy-efficient transmission paradigm. Specifically, a novel SWIPT-based primary-secondary cooperation model is proposed to increase the transmission rate of energy/spectrum constrained users. In the proposed model, a multi-antenna secondary user conducts simultaneous energy harvesting and information forwarding by means of power splitting (PS), and tries to maximize its own transmission rate under the premise of successfully assisting the data delivery of the primary user. After the problem formulation, joint power splitting and beamforming optimization algorithms for decode-and-forward and amplify-and-forward modes are presented, in which we obtain the optimal PS factor and beamforming vectors using a golden search method and dual methods. Simulation results show that the proposed SWIPTbased primary-secondary cooperation schemes can obtain a much higher level of performance than that of non-SWIPT cooperation and non-cooperation schemes.

Analysis on Effect of TCP Retransmission to Energy Consumption on End-to-End Data Transfer (TCP 재전송이 종단간 데이터 전송 에너지 소모량에 미치는 영향 분석)

  • Seok, Woojin;Choi, Wonjun;Kwak, Jaiseung;Lee, Manhee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.950-953
    • /
    • 2016
  • A packet loss caused TCP segment drop and retransmission. This makes the energy useless, which is consumed to deliver the whole packets of the dropped segment over many hops. In this paper, end-to-end TCP retramission will be analyzed for the effect to energy consumed for delivering data. Especially, this paper will compare and analyze the legacy TCP method and Store-and-Forward method, and the method of computing the energy efficiency to transmission loss. This paper expects that the proposed method can contribute to new energy saving decision or algorithm on diverse data transmission situation.

Data Collection Management for Wireless Sensor Networks Using Drones with Wireless Power Transfer

  • Ikjune Yoon;Dong Kun Noh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.121-128
    • /
    • 2023
  • To increase the lifetime of the network in wireless sensor networks, energy harvesting from the surrounding environment or wireless power transfer is being used. In addition, to reduce the energy imbalance and increase the amount of data gathered, a method using mobile sink nodes that visit sensor nodes to gather data has been used. In this paper, we propose a technique to reduce the load on the relay node and collect a lot of data evenly in this environment. In the proposed scheme, sensor nodes construct Minimum Depth Trees (MDTs) considering the network environment and energy, and allocate the data collection amount. Simulation results show that the proposed technique effectively suppresses energy depletion and collects more data compared to existing techniques.

Concerted Asynchronous Proton Transfer in H-Bonding Relay Model: An Implication of Green Fluorescent Protein

  • Kang, Baotao;Karthikeyan, S.;Jang, Du-Jeon;Kim, Heeyoung;Lee, Jin Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1961-1966
    • /
    • 2013
  • Theoretical investigations have been performed for the ground state ($S_0$) and the first excited state ($S_1$) of the hydrogen bonded green fluorescent protein (GFP) model. The potential energy surface (PESs) of $S_0$ was obtained by B3LYP method and that of $S_1$ was obtained by CIS method. Based on the relative stabilities of species and the energy barriers for the proton transfer, it was found that proton transfer could take place both under the ground state and the first excited state. As determined by the proton motions along the reaction coordinate, both the ground state proton transfer (GSPT) and the excited state proton transfer (ESPT) are considered as a concerted and asynchronous process.

An Efficient Cluster Management Scheme Using Wireless Power Transfer for Mobile Sink Based Solar-Powered Wireless Sensor Networks

  • Son, Youngjae;Kang, Minjae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.105-111
    • /
    • 2020
  • In this paper, we propose a scheme that minimizes the energy imbalance problem of solar-powered wireless sensor network (SP-WSN) using both a mobile sink capable of wireless power transfer and an efficient clustering scheme (including cluster head election). The proposed scheme charges the cluster head using wireless power transfer from a mobile sink and mitigates the energy hotspot of the nodes nearby the head. SP-WSNs can continuously harvest energy, alleviating the energy constraints of battery-based WSN. However, if a fixed sink is used, the energy imbalance problem, which is energy consumption rate of nodes located near the sink is relatively increased, cannot be solved. Thus, recent research approaches the energy imbalance problem by using a mobile sink in SP-WSN. Meanwhile, with the development of wireless power transmission technology, a mobile sink may play a role of energy charging through wireless power transmission as well as data gathering in a WSN. Simulation results demonstrate that increase the amount of collected data by the sink using the proposed scheme.

A PCS Control Strategy for Hybrid ESS with Function of Emergency Power Supply (비상전원 기능을 갖는 하이브리드 ESS를 위한 PCS 제어전략)

  • Kim, Sang-Jin;Kwon, Min-Ho;Choi, Se-Wan;Paik, Seok-Min;Kim, Mi-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.302-311
    • /
    • 2016
  • This paper proposes a hybrid ESS that integrates an energy storage system (ESS) with an uninterruptible power supply (UPS). The hybrid ESS has a demand management and emergency power supply function while increasing the battery utilization of the UPS, which has just been used in a power failure. In addition to the critical load, the proposed system augments the capacity of emergency generation using an additional load, which has voltage and frequency-dependent characteristics to the grid side. The control algorithm of the AC-DC converter and bidirectional DC-DC converter is proposed for demand management and emergency power supply. Furthermore, seamless and autonomous transfer methods to alleviate the transient during mode transfer are proposed. To validate the proposed control scheme, experimental results from a 5 kW prototype are provided.

Joint Beamforming and Power Splitting Design for Physical Layer Security in Cognitive SWIPT Decode-and-Forward Relay Networks

  • Xu, Xiaorong;Hu, Andi;Yao, Yingbiao;Feng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • In an underlay cognitive simultaneous wireless information and power transfer (SWIPT) network, communication from secondary user (SU) to secondary destination (SD) is accomplished with decode-and-forward (DF) relays. Multiple energy-constrained relays are assumed to harvest energy from SU via power splitting (PS) protocol and complete SU secure information transmission with beamforming. Hence, physical layer security (PLS) is investigated in cognitive SWIPT network. In order to interfere with eavesdropper and improve relay's energy efficiency, a destination-assisted jamming scheme is proposed. Namely, SD transmits artificial noise (AN) to interfere with eavesdropping, while jamming signal can also provide harvested energy to relays. Beamforming vector and power splitting ratio are jointly optimized with the objective of SU secrecy capacity maximization. We solve this non-convex optimization problem via a general two-stage procedure. Firstly, we obtain the optimal beamforming vector through semi-definite relaxation (SDR) method with a fixed power splitting ratio. Secondly, the best power splitting ratio can be obtained by one-dimensional search. We provide simulation results to verify the proposed solution. Simulation results show that the scheme achieves the maximum SD secrecy rate with appropriate selection of power splitting ratio, and the proposed scheme guarantees security in cognitive SWIPT networks.

Thermo-hydrodynamic investigation into the effects of minichannel configuration on the thermal performance of subcooled flow boiling

  • Amal Igaadi;Rachid El Amraoui;Hicham El Mghari
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.265-274
    • /
    • 2024
  • The current research focuses on the development of a numerical approach to forecast strongly subcooled flow boiling of FC-72 as the refrigerant in various vertical minichannel shapes for high-heat-flux cooling applications. The simulations are carried out using the Volume of Fluid method with the Lee phase change model, which revealed some inherent flaws in multiphase flows that are primarily due to an insufficient interpretation of shearlift force on bubbles and conjugate heat transfer against the walls. A user-defined function (UDF) is used to provide specific information about this noticeable effect. The influence of shape and the inlet mass fluxes on the flow patterns, heat transfer, and pressure drop characteristics are discussed. The computational results are validated with experimental measurements, where excellent agreements are found that prove the efficiency of the present numerical model. The findings demonstrate that the heat transfer coefficient decreases as the mass flux increases and that the constriction design improves the thermal performance by 24.68% and 10.45% compared to the straight and expansion shapes, respectively. The periodic constriction sections ensure good mixing between the core and near-wall layers. In addition, a slight pressure drop penalty versus the thermal transfer benefits for the two configurations proposed is reported.

Simultaneous Wireless Information and Power Transfer in Two-hop OFDM Decode-and-Forward Relay Networks

  • Di, Xiaofei;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.152-167
    • /
    • 2016
  • This paper investigates the simultaneous wireless information and power transfer (SWIPT) for two-hop orthogonal frequency division multiplexing (OFDM) decode-and-forward (DF) relay network, where a relay harvests energy from radio frequency signals transmitted by a source and then uses the harvested energy to assist information transmission from the source to its destination. The power splitting receiver is considered at the relay. To explore the performance limit of such a SWIPT-enabled system, a resource allocation (RA) optimization problem is formulated to maximize the achievable information rate of the system, where the power allocation, the subcarrier pairing and the power splitting factor are jointly optimized. As the problem is non-convex and there is no known solution method, we first decompose it into two separate subproblems and then design an efficient RA algorithm. Simulation results demonstrate that our proposed algorithm can achieve the maximum achievable rate of the system and also show that to achieve a better system performance, the relay node should be deployed near the source in the SWIPT-enabled two-hop OFDM DF relay system, which is very different from that in conventional non-SWIPT system where the relay should be deployed at the midpoint of the line between the source and the destination.

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.