• 제목/요약/키워드: Energy and Environmental Performance

검색결과 1,513건 처리시간 0.035초

에너지슬래브 적용 지열원 열펌프 시스템의 성능 특성에 관한 실증 연구 (Heating and Cooling Performance of a Ground Coupled Heat Pump System with Energy-Slab)

  • 최종민
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.196-203
    • /
    • 2012
  • Energy foundations and other thermo-active ground structure, energy wells, energy-slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and a heat sink in summer. The geothermal heat pump system with energy-slab represented very high heating and cooling performance due to the stability of EWT from energy slab. However, the performance of it seemed to be affected by the atmospheric air temperature.

실험을 통한 공동주택 환기시스템의 실제 운전 시 전열교환성능 검토 (An Evaluation on Energy Recovery Performance of the Ventilation System in Multi-Residential Building by Field Measurement)

  • 최연희;송두삼
    • 설비공학논문집
    • /
    • 제29권2호
    • /
    • pp.68-73
    • /
    • 2017
  • Recently, energy recovery ventilators (ERVs) have been installed for energy saving in many multi-residential buildings in Korea. The performance of the heat exchanger of an ERV is analyzed in this study under specific indoor and outdoor conditions in a test-cell measurement. However, the performance of the heat exchanger varies according to the indoor and outdoor condition. In this study, the performance of energy recovery of the ventilation system was therefore analyzed in actual weather conditions using field measurement. Experiments were conducted under winter conditions in a multi-residential building for 20 days. Based on the measurement results, the characteristics of sensible heat and latent heat exchange rates were analyzed.

현장 열응답 시험과 수치해석을 통한 터널에 적용된 에너지 텍스타일의 열적 거동 연구 (A study on thermal behavior of energy textile by performing in-situ thermal response test and numerical simulation)

  • 이철호;박문서;민선홍;정재형;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.325-335
    • /
    • 2010
  • A new geothermal energy source obtained from a tunnel structure has been studied in this paper. The geothermal energy is extracted through a textile-type ground heat exchanger named "Energy Textile" that is installed between a shotcrete layer and a guided drainage geotexitle. A test bed was constructed in an abandoned railway tunnel to verify the geothermal heat exchanger system performed by the energy textile. To evaluate the applicability of the energy textile, we measured the thermal conductivity of shotcrete and lining samples which were prepared in accordance with a common mixture design. An overall performance of the energy textile installed in the test bed was evaluated by carrying out a series of in-situ thermal response test. In addition, a 3-D finite volume analysis (FLUENT) was adopted to simulate the operation of the ground heat exchanger being encased in the energy textile with the consideration of the effect of the shotcrete and lining thermal conductivity.

  • PDF

BUILDING INFORMATION MODELING (BIM)-BASED DESIGN OF ENERGY EFFICIENT BUILDINGS

  • Cho, Chung-Suk;Chen, Don;Woo, Sungkwon
    • 한국BIM학회 논문집
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2012
  • With the increased awareness of energy consumption as well as the environmental impact of building operations, architects, designers and planners are required to place more consideration on sustainability and energy performance of the building. To ensure most of those considerations are reflected in the building performance, critical design decisions should be made by key stakeholders early during the design development stage. The application of BIM during building energy simulations has profoundly improved the energy analysis process and thus this approach has gained momentum. However, despite rapid advances in BIM-based processes, the question still remains how ordinary building stakeholders can perform energy performance analysis, which has previously been conducted predominantly by professionals, to maximize energy efficient building performance. To address this issue, we identified two leading building performance analysis software programs, Energy Plus and IES (IES ), and compared their effectiveness and suitability as BIM-based energy simulation tools. To facilitate this study, we examined a case study on Building Performance Model (BPM) of a single story building with one door, multiple windows on each wall, a slab and a roof. We focused particularly on building energy performance by differing building orientation and window sizes and compared how effectively these two software programs analyzed the performance. We also looked at typical decision-making processes implementing building energy simulation program during the early design stages in the U.S. Finally, conclusions were drawn as to how to conduct BIM-based building energy performance evaluations more efficiently. Suggestions for further avenues of research are also made.

재난·재해 시 이재민을 위한 이동형 에너지 셜터하우스 (MeSH) 계획 -실내 온열환경 성능을 중심으로- (Mobile Energy Shelter House(MeSH) for victims when a disaster occurs - Focused on Indoor Thermal Environmental Performance -)

  • 신화연;김정국;김종훈;정학근;장철용;홍원화
    • KIEAE Journal
    • /
    • 제14권6호
    • /
    • pp.75-80
    • /
    • 2014
  • Development of temporary housing for victims whose house damaged is required. In this study is to plan temporary house space 'Mobile Energy Shelter House ; MeSH' that can be inhabited for a long time. And measure the indoor Environmental performance. 'Mobile Energy Shelter House : MeSH' was made by reflecting Passive Design, Universal Design. Also, thermal insulation that meets the 'Korea standard insulation' for use low energy. Winter season, measuring temperature, humidity, air velocity and radiation temperature when floor heating that temperature controllers ware installed is used. Confirmed the data for the 8:00pm to 8:00am because evening hours are expected as residents live. Average outdoor temperature was $-11.3^{\circ}C$ and Indoor temperature was from $16.09^{\circ}C$ to $20.63^{\circ}C$. Calculated the TDRi of the window surface for checked condensation risk. TDRi value was 0.185. Furthermore, PMV value was -0.08 to -0.85. It was satisfied to ISO comfort criterion ranged.

에너지 절약형 건축물 설계를 위한 대학 강의동 형태별 에너지 성능 비교에 관한 연구 (An Energy Performance Comparison of University Lecture Facilities for Energy Saving Building Design)

  • 김태훈;서지효;추승연
    • 대한건축학회논문집:계획계
    • /
    • 제34권11호
    • /
    • pp.105-112
    • /
    • 2018
  • Global environmental problems are growing, and the importance of buildings with high energy consumption has been emphasized. In Korea, the Ministry of Land, Transport and Maritime Affairs has been promoting the mandatory zero energy building since 2020, and guidelines related to the zero energy building have been developed. In addition, based on the "Energy-saving Design Criteria for Buildings" of the "Green Building Promotion Act" in Korea, the standards for energy-saving design are specified and the energy saving plan is written. Besides, the 'Energy-saving construction standards for eco-friendly houses' also specify insulation, machinery, equipment, and sunshade. Also, there is little consideration about the cost such as construction cost and material cost which should be considered important in the construction stage. Therefore, this study aims at analysis of building type and energy performance versus materials for energy saving building design considering energy performance in planning aspect of initial design stage. In this study, because the variables can not be neglected in this study, it is selected as the lecture facility of the 'K' university campus building which can consider the remaining factors except the passive design element as the control variable, Energy performance analysis.

LEED Healthcare에서 득점 현황 분석에 관한 연구 (The Analysis of Achieved Score earned by LEED Healthcare)

  • 강지은
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제25권3호
    • /
    • pp.7-14
    • /
    • 2019
  • Purpose: The purpose of this research is to find out week and strong aspects in LEED categories based on achieved scores earned by LEED-HC(Healthcare) v.2009. Methods: The LEED-HC scorecards of 88 healthcare projects are analyzed. The analysis are focused on relationship between achieved scores, LEED categories and achieved levels. This relationship was presented by graphs and charts. Results: 1) Compare to LEED-NC, in LEED-HC, sub-categories related to public health are added. The scores are added in Energy Atmosphere and Indoor Environmental Quality. 2) Achieve scores in Sustainable Site are high and one in Energy Atmosphere and Indoor Environmental Quality are low at all levels. 3) Scores which was lost in Energy Atmosphere are recovered in Material Resource and Sustainable Site in order to keep its level. 4) Since most of scores in Energy Atmosphere are under EAc1 Optimize energy performance sub-categories, it is important to achieve more score in Optimize Energy Performance Sub-Categories to gain a higher level. Even if LEED-HC has more score in Energy Atmosphere, this is a hard to achieve scores in that categories. It is important to review Energy Atmosphere categories and its points for improvement. Implications: This study will provide basic database in order to establish Korean green building rating system for hospital.

온실 내 잉여 태양열을 이용한 공기열원 히트펌프 성능향상 (Performance Improvement of an Air Source Heat Pump by Storage of Surplus Solar Energy in Greenhouse)

  • 권진경;강금춘;문종필;강연구;김충길;이수장
    • 생물환경조절학회지
    • /
    • 제22권4호
    • /
    • pp.328-334
    • /
    • 2013
  • 본 연구에서는 온실 내부의 태양 잉여열과 외부의 공기열을 선택적으로 열원으로 이용함으로써 히트펌프의 성능을 향상시키고, 온실의 환기 지연을 통해 이산화탄소 시용비용을 절감할 수 있는 온실 공조시스템을 개발하고자 하였다. 본 시스템의 축열 과정은 태양 잉여열을 이용하는 내부순환모드와 외기열을 이용하는 외부순환모드가 온실 내부온도에 따라 자동으로 절환되도록 구성하였으며, 히트펌프 가동, 축열모드 절환, 난방 가동을 위한 6개의 온도값을 입력함으로써 축열과 난방이 자동으로 수행되도록 설계하였다. 단동온실을 대상으로 무환기 조건에서 기초시험을 수행한 결과, 태양 잉여열을 이용한 축열은 약 11시부터 시작되어 평균 3시간 30분 정도 유지되었으며, 주간의 온실 내부온도는 환기를 수행하지 않음에도 대부분 약 $20{\sim}28^{\circ}C$ 범위를 유지하였다. 주간 내부순환모드에서 시스템의 난방성능계수는 약 3.35로 야간 외부순환모드의 2.46 및 주간 외부순환모드의 2.67에 비해 각각 36% 및 25% 향상됨을 확인하였다. 본 시스템의 개선사항으로 태양 잉여열의 효율적 이용을 위해 축열조 관리온도를 상승시킬 수 있는 고효율 히트펌프의 적용이 필요하며, 온실의 무환기 운용에 따른 과습환경의 조성을 방지하고 태양 잉여열 수준이 높은 시기에 온실의 온도상승을 방지하기 위해 강제환기를 운전모드에 추가할 필요가 있는 것으로 판단되었다.

지중 열교환기 종류에 따른 성능 및 시공비 분석 (Performance and Initial Cost Analysis on Various Type of Ground Heat Exchangers)

  • 이승래;윤석;조남현;김민준;고규현
    • 한국지열·수열에너지학회논문집
    • /
    • 제10권1호
    • /
    • pp.14-19
    • /
    • 2014
  • This paper presents a preliminary experimental and computational study on the evaluation of thermal performance and initial cost of U, W and coil type ground heat exchangers (GHEs). Heat exchange rate of the individual GHE was evaluated from the thermal resperformance test (TPT) results, and the construction cost was also calculated. For more information, GLD (ground loop design) simulations of various piping size are carried out. From simulation results, the optimized GHE was suggested based on the thermal performance and construction cost as well. Besides, the required borehole length of U and W type GHEs was calculated considering a real construction condition using GLD program.

The contribution of column optimization on the embodied energy performance of concrete framed buildings

  • Miller, Dane;Doh, Jeung-Hwan;Ho, Nhat Minh;Peters, Tim
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.564-567
    • /
    • 2015
  • The incorporation of sustainability principles into the structural engineering design of buildings is increasingly important. Historically the focus of improvements to the environmental performance of structures has been operational energy considerations. Current research has highlighted the requirement for changing the approach by increasing the consideration of embodied energy in structures. This research was conducted to build on previous research by the authors in quantifying the contribution of column optimization to the embodied energy performance of concrete framed buildings. Ultimately, the authors intend to develop mechanisms through which sustainable design can be quantified, enabling alleviation prior to construction. Columns are a key structural element to consider as part of this development process. The outcomes of this assessment reinforced previous findings, observing that reduced structural weight as a result of other sustainable design measures carries manifold benefits include column design savings. Through the quantification of the embodied energy outcomes during this research phase, the columns were shown to contribute up to 19.71% of the total embodied energy of the structural system dependent upon construction technique used.

  • PDF