• 제목/요약/키워드: Energy absorber

검색결과 406건 처리시간 0.024초

광흡수층 두께에 따른 투광형 비정질 실리콘 박막 태양전지의 양면발전 성능특성 (Impact of Absorber Thickness on Bifacial Performance Characteristics of Semitransparent Amorphous Silicon Thin-Film Solar Cells)

  • 서영훈;이아름;신민정;조아라;안승규;박주형;유진수;최보훈;조준식
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.97-102
    • /
    • 2019
  • Bifacial and semitransparent hydrogenated amorphous silicon (a-Si:H) thin-film solar cells in p-i-n configuration were prepared with front and rear transparent conducting oxide (TCO) electrodes using plasma-enhanced chemical vapor deposition method. Fluorine-doped tin oxide and tin-doped indium oxide films were used as front and rear TCO contacts, respectively. Film thickness of intrinsic a-Si:H absorber layers were controlled from 150 nm to 450 nm by changing deposition time. The dependence of performance characteristics of solar cells on the front and rear illumination direction were investigated. For front illumination, gradual increase in the short-circuit current density (JSC) from 10.59 mA/㎠ to 14.19 mA/㎠ was obtained, whereas slight decreases from 0.83 V to 0.81 V for the open-circuit voltage (VOC) and from 68.43% to 65.75% for fill factor (FF) were observed. The average optical transmittance in the wavelength region of 380 ~ 780 nm of the solar cells decreased gradually from 22.76% to 15.67% as the absorber thickness was changed from 150 nm to 450 nm. In case of the solar cells under rear illumination condition, the JSC increased from 10.81 to 12.64 mA/㎠ and the FF deceased from 66.63% to 61.85%, while the VOC values were maintained at 0.80 V with increasing the absorber thickness from 150 nm to 450 nm. By optimizing the deposition parameters, a high-quality bifacial and semitransparent a-Si:H solar cell with 350 nm-thick i-a-Si:H absorber layer exhibited the conversion efficiencies of 7.69% for front illumination and 6.40% for rear illumination, and average visible optical transmittance of 17.20%.

수중방파제와 다공성 소파장치가 구조물에 미치는 영향 (Influence of a Structure by the Submerged Breakwater and the Porous Wave Absorber)

  • 박진호;정태화;조용식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.225-228
    • /
    • 2008
  • There are many studies about submerged structures or porous wave absorbers to decrease damage of coast and structures. Submerged structures and porous wave absorber are decreasing energy of incoming wave by reflecting or dissipation with changing depth or with porous rubble mound. This study addresses the reflection and transmission of long wave from a trapezoidal breakwater and a vertical porous wave absorber at the same time. A systematic shape transfer is derived to determine wave reflection and transmission. And periodic solutions are matched at the slope and the front face of the absorber by assuming continuity of pressure and mass. The transmission coefficient is determined as a function of parameters describing the incoming waves, transmitting waves through the trapezoidal breakwater and the absorber characteristics.

  • PDF

자연형 온수 급탕시스템 개발 (Development of Passive Solar Water Heater 1. Selective absorbers)

  • 이길동;오정무;유창균
    • 태양에너지
    • /
    • 제4권2호
    • /
    • pp.29-36
    • /
    • 1984
  • This paper reviews the current status of R&D work on selective absorber materials. For the efficient utilization of solar energy, various types of selective absorber materials are being used for solar hot water heaters. Many selective absorbers which have been proposed and designed up to data are classified according to the absorption mechanisms. Temperature-time cycle method is often recommended for the measurement of solar absorptance. In addition, conversion efficiency of the solar collector with selective surface is compared with one with black paint surface.

  • PDF

항공기 착륙장치 동하중 해석 (Dynamic Load Analysis of Aircraft Landing Gear)

  • 신정우;김태욱;황인희
    • 한국항공운항학회지
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2008
  • Role of landing gear is to absorb energy which is generated by aircraft ground maneuvering and landing. Generally, in order to absorb the impact energy, oleo-pneumatic type shock absorber is used in aircraft landing gear. Oleo-pneumatic type shock absorber has a good energy absorption efficiency and is light in weight because structure of oleo-pneumatic type shock strut is relatively simple. In this study, dynamic load analysis for swinging arm type landing gear was performed to predict landing loads. Modeling of landing gear was conducted with MSC.ADAMS, and dynamic landing loads were analyzed based on ADS-29. Optimum landing loads were generated through adjustment of damping orifice and the analysis results were presented with various aircraft attitude.

  • PDF

흡수관 형상과 일사 각도에 따른 진공관형 태양열 집열기의 성능 변화 (Thermal Performance Variations of Glass Evacuated Tube Solar Collectors Depending on the Absorber Shape and the Incidence Angle of Solar Ray)

  • 김용;서태범;강용혁
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.659-668
    • /
    • 2005
  • The thermal performances of glass evacuated tube solar collectors are numerically investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are numerically investigated. Dealing with only collecting tube, the effects of not only the shape of the absorber tube but also the incidence angle of solar irradiation on the thermal performance of the collector are studied because the energy obtained by the absorber can be varied according to the incidence angle of solar radiation. However, the solar irradiation consists of the beam radiation as well as the diffuse radiation. Also, in actual system, the interference of solar irradiation and heat transfer interaction between the tubes should be considered. Therefore, this study considered these effects is carried out experimentally and numerically. The accuracy of the numerical model is verified by experiments. The result shows that the thermal performance of the absorber used a plate fin and U-tube is about $25\%$ better than those of the other models.

Experimental Study on Heat Transfer Performance of Absorber with Variable Plate Types

  • M.A. Sarker;Moon, C.G.;Lee, H.S.;Kim, E.P.;Yoon, J.I.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 춘계 학술발표회 논문집
    • /
    • pp.201-212
    • /
    • 2004
  • An experimental study of the absorption process of water vapor into a lithium bromide solution was performed. For the purpose of developing high performance absorption chiller/hater utilizing lithium bromide solution as working fluid, it is important to improve the performance of absorber with the larger heat transfer area of the four heat exchangers. The experimental apparatus was composed of a plate type absorber which could increase the heat exchange area per unit volume to investigate more detail characteristics instead of the conventional type, that is, horizontal tube bundle type. The size of plate absorbers were made for 0.4m$\times$0.6m and the design objective of a refrigeration capacity was 1RT. In this experiment, three kinds of plate absorbers namely flat plate, dimple plate and groove plate were used. The obtained results were less than the design objective values, that is, the refrigeration capacity was about 0.3 ~0.4RT and the overall heat transfer coefficient was 500~600 kcal/$m^2$h$^{\circ}C$ at the standard conditions.

  • PDF

메탄올-글리세린계를 작동유체로 하는 흡수열펌프에서 흡수기 연구 (A Study on Absorber in Absorption Heat Pump with Methanol-Glycerine System as a Working Fluid)

  • 민병훈
    • 공업화학
    • /
    • 제17권1호
    • /
    • pp.111-117
    • /
    • 2006
  • 냉 난방 수요에서 일어나는 환경오염의 최소화와 화석연료 소비를 감소시키기 위해서 에너지보존을 개선시키는 것은 필수적이다. 이러한 점에서 흡수식 열펌프기술은 에너지 절약을 위해서 많은 가능성을 가지고 있다. 흡수식 열펌프는 에너지를 주입하지 않고 폐열의 이용을 높일 수 있는 방법이다. 흡수식 열펌프는 흡수기에서 흡수된 양의 증가가 매우 중요하기 때문에 흡수기 성능이 매우 중요하다. 본 연구에서는 흡수기의 성능을 개선시키기 위해서 메탄올과 글리세린을 작동유체로 하는 두 종류의 흡수기에 관한 연구를 수행하였다. 전자는 흡수기 내에 액상을 접선방향으로 공급하는 것이고 후자는 흡수기 내벽에 나선형 관을 설치하여 액상을 접선방향으로 공급하는 것이다. 실험 결과 후자가 흡수기에서 발생하는 열 및 물질전달이 향상되어 흡수성능이 증가되었음을 알 수 있었다.

이차원(二次元) 부유식(浮游式) 파랑발전기(波浪發電器)의 유체역학적(流體力學的) 특성(特性) (Hydrodynamic Characteristics of Two-dimensional Wave-energy Absorbers)

  • 김무현;최항순
    • 대한조선학회지
    • /
    • 제20권1호
    • /
    • pp.47-58
    • /
    • 1983
  • A study is made, in the framework of linear potential theory, to investigate the hydrodynamic characteristics of two-dimensional wave-energy absorbers as like the Salter's duck and an oscillating cam with Lewis-form section, which undergo uncoupled heaving and rolling motions in an incident linear gravity wave in deep water. Wave energy is supposed to be extracted by a linearly damped generator with an spring. Some well-known formulae in ship hydrodynamics such as Haskind-Newman relation and Bessho-Newman relation are utilized in forms of Kochin functions to derived expressions for efficiency, breaking effect and drift force of the absorber. Maximum ideal efficiency of 100% can be arrived at an prescribed tuning frequency. Coupling effect is also examined to assess the detrimental effect of sway on efficiency. From numerical calculations for both types of two-dimensional devices it may be concluded that a wave-energy absorber functions at the same time as a wave breaker and that the drift force acting on the device becomes smaller when it absorbs wave energy than as it oscillates freely. Finally the study is extended to an infinite array system, equivalent to a body in a canal, to show that all incident wave energy can be absorbed regardless of the absorber's size, only if the optimum space and the optimum condition of control are realized.

  • PDF

Predictive control and modeling of a point absorber wave energy harvesting connected to the grid using a LPMSG-based power converter

  • Abderrahmane Berkani;Mofareh Hassan Ghazwani;Karim Negadi;Lazreg Hadji;Ali Alnujaie;Hassan Ali Ghazwani
    • Ocean Systems Engineering
    • /
    • 제14권1호
    • /
    • pp.17-52
    • /
    • 2024
  • In this paper, the authors explore the modeling and control of a point absorber wave energy converter, which is connected to the electric grid via a power converter that is based on a linear permanent magnet synchronous generator (LPMSG). The device utilizes a buoyant mechanism to convert the energy of ocean waves into electrical power, and the LPMSG-based power converter is utilized to change the variable frequency and voltage output from the wave energy converter to a fixed frequency and voltage suitable for the electric grid. The article concentrates on the creation of a predictive control system that regulates the speed, voltage, and current of the LPMSG, and the modeling of the system to simulate its behavior and optimize its design. The predictive model control is created to guarantee maximum energy output and stable grid connection, using Matlab Simulink to validate the proposed strategy, including control side generator and predictive current grid-side converter loops.

Benefits of the S/F Cask Impact Limiter Weldment Imperfection

  • Ku, Jeong-Hoe;Lee, Ju-Chan;Kim, Jong-Hun;Park, Seong-Won;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.191-203
    • /
    • 2000
  • This paper describes the beneficial effect of weldment imperfection of the cask impact limiter, by applying intermittent-weld, for impact energy absorbing behavior. From the point of view of energy absorbing efficiency of an energy absorber, it is desirable to reduce the crush load resistance and increase the deformation of the energy absorber within certain limit. This paper presents the test results of intermittent-weldment and the analysis results of cask impacts and the discussions of the improvement of impact mitigating effect by the imperfect-weldment. The rupture of imperfect weldment of an impact limiter improves the energy-absorbing efficiency by reducing the crush load amplitude without loss of total energy absorption. The beneficial effect of weldment imperfection should be considered to the cask impact limiter design.

  • PDF