• Title/Summary/Keyword: Energy absorber

Search Result 407, Processing Time 0.023 seconds

Design validation of a composite crash absorber energy to an emergency landing

  • Guida, Michele;Marulo, Francesco;Bruno, Massimiliano;Montesarchio, Bruno;Orlando, Salvatore
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this study, the failure mode and energy absorption capabilities of a composite shock absorber device, during an emergency landing are evaluated. The prototype has been installed and tested in laboratory simulating an emergency landing test condition. The crash absorber presents an innovative configuration able to reduce the loads transmitted to a helicopter fuselage during an emergency landing. It consists of a composite tailored tube installed on the landing gear strut. During an emergency landing this crash absorber system should be able to absorb energy through a pre-designed deformation. This solution, compared to an oleo-pneumatic shock absorber, avoids sealing checks, very high values of the shock absorber pressure, and results to be lighter, easy in maintenance, inspect and use. The activities reported in this paper have become an attractive research field both from the scientific viewpoint and the prospect of industrial applications, because they offer benefits in terms of energy absorbing, weight savings, increasing the safety levels, and finally reducing the costs in a global sense.

Improving support performances of cone bolts by a new grout additive and energy absorber

  • Komurlu, Eren
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • The cone bolts with expanded front ends supply improved anchoring performances and increase energy absorbing capacities due to ploughing in the grouted drills. Within this study, use of a novel energy absorber for the cone bolt heads were investigated to assess its design in terms of supplying high support performances. Additionally, different grout material designs were tested to investigate whether the energy absorption capacities of the rock bolts can be improved using a silicone based thermoset polymer (STP) additive. To determine load bearing and energy absorption capacities, a series of deformation controlled pull-out tests were carried out by using bolt samples grouted in rock blocks. According to the results obtained from this study, maximum load bearing capacities of cone bolts are similar and mostly depend on the steel material strength, whereas the energy absorption capacity was determined to significantly vary in accordance with the displacement limits of the shanks. As a result of using STP additive and new polyamide absorber rings, displacement limits without the steel failure increase. The STP additive was found to improve the energy absorption capacities of grouted cone bolts. The absorber rings designed within this study were also assessed to be highly effective and able to double up the energy absorption capacities of the cone bolts.

Performance Evaluation of SiC Honeycomb Modules Used for Open Volumetric Solar Receivers (개방형 체적식 흡수기를 위한 SiC 허니컴 모듈의 성능 평가)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Kim, Jong-Kyu;Yoon, Hwan-Ki;Lee, Sang-Nam;Han, In-Sub;Seo, Doo-Won
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.120-125
    • /
    • 2012
  • Daegu Solar Power Tower Plant of a 200 kW thermal capacity uses an open air receiver. An air receiver is generally based on the volumetric receiver concept with porous ceramic absorbers. Because absorber material is important in the volumetric receiver, ceramic materials with excellent thermal conductivity, high solar absorptivity and good thermal stability have been researched. KIER also developed SiC honeycomb absorber modules and evaluated performance of the modules at the KIER solar furnace. For performance evaluation, we made an open volumetric receiver containing the modules and measured the outlet temperature and the efficiency. It is demonstrated that performance of the KIER absorber is comparable to that of a reference absorber developed by DLR.

  • PDF

Effects of Absorber Tube Shape and Operating Conditions on Thermal Performance of All-Glass Evacuated Tube Solar Collectors (이중 진공관형 태양열 집열기의 집열관 내부 형상과 운전 조건이 성능 변화에 미치는 영향)

  • Choi, Eun-Young;Kim, Yong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.19-25
    • /
    • 2005
  • All-glass evacuated tube solar collectors consist of glass evacuated tubes and absorber tubes. Solar thermal energy from the sun is transferred to the working fluid through the glass evacuated tube and the absorber tube. Several collectors which have different absorber tubes are tested to find the effects of the absorber tube shapes and the operating conditions such as the incident heat flux and the flow rate. As the results, the efficiency of the collector which has a finned tube U tube is about $2{\sim}5%$ higher than that of the others in all cases on an average. And the collector has a finned U tube has the highest efficiency at the high flow rate and the low incident heat flux. In this condition, the outlet mean temperature is low and the heat loss becomes small. Also, it is known that the fin effect is greater than the shade effect.

Design of Impact Energy Absorber for High Speed railway Vehicles (고속전철용 충격흡수장치의 설계)

  • 허승진;이종현;구정서
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.377-384
    • /
    • 1998
  • The crushable front part of the conventional TGV is composed of 3 energy absorption zones; retractable coupler, protective headstock and honeycomb structure. This frontal part must absorb about 80% of the energy that should be done in a cra shworthy design. The conventional TGV can absorb 2MJ impact energy by the frontal end, but 5MJ is the design target for energy absorption in the next generation TGV. To accomplish this design goal, a new concept of design is necessary for energy absorbing components. In this paper, the design concept of the tube expansion energy absorber will be proposed and analyzed. The crash analysis of the energy absorber are performed by comparing the value of the theoretical equation wi th the simulation calculated from the commercial nonlinear FE-Code ‘PAM-CRASH’ S/W.

  • PDF

Characteristic and Development of All-in-one Shock Energy Absorber Lanyard Protection Tube used Super Fibers (슈퍼 섬유를 활용한 일체형 Shock Energy Absorber Lanyard Protection Tube 제조 및 특성분석)

  • Cho, Jin Won;Kwon, Sang Jun;Kim, Sang Tae;Yeum, Jeong Hyun;Kang, Ji Man;Ji, Byung Chul
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.106-113
    • /
    • 2014
  • Work-related falls are a major problem in the construction and roofing industries. To avoid serious injury to the worker caused by high decelerations or forces, different systems to absorb the energy of a fall are implemented in personal protective equipment. In this study, shock energy absorber lanyard protection tube was prepared using high tenacity PET fiber, P-aramid fiber, and UHMWPE fiber, respectively. Dynamic load test and static load test, bursting strength test based on the Korea fall protection equipment standard(Korea Occupational Safety & Health Agency standard 2013-13) or conformity European safety test(CE : EN355) were conducted. Especially maximum arrest force by dynamic load test of energy absorber showed below 6,000N.

Numerical Study on Thermal Characteristics at Absorber Plate of Flat-Plate Solar Collector with Single Riser (평판형 집열기의 단일 지관에서의 입구 Re수에 따른 흡열판 온도분포에 대한수치해석 연구)

  • Kim, Jeong-Bae;Lee, Dong-Won;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.149-154
    • /
    • 2007
  • It is essential to know the heat transfer characteristics at the absorber plate of Flat-plate solar collector for optimum design. For flat-plate solar collector, it is difficult to experimentally study the effect for the Reynolds number of riser considering low mass flow rate being applied into the collector with one riser tube. So, this study were performed to show the heat transfer characteristics of flat-plate solar collector with single absorber plate and riser for various Reynolds number at riser using commercial code FLUENT 6.0. The base collector size is chosen with $0.4m^2$ as 0.2m by 2m with single riser in this study, Reynolds number at riser is from 200 to 1200 including about 530 at typical flat-plate collector with 10 risers considering the mass flow rate of 0.02kg/s per collector area for the certificate test Through the simulation, the results were presented as the temperature distribution at the absorber plate for various flow rate and solar irradiance conditions, then showed the effective length scale of the absorber plate The real solar irradiation condition is assumed as the constant heat flux condition of $500w/m^2$ considering the annual average solar irradiance in Korea.

Solid-State Laser Mode-Locking Near 1.25 μm Employing a Carbon Nanotube Saturable Absorber Mirror

  • Cho, Won-Bae;Choi, Sun-Young;Kim, Jun-Wan;Yeom, Dong-Il;Kim, Ki-Hong;Rotermund, Fabian;Lim, Han-Jo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.56-60
    • /
    • 2011
  • We demonstrate passive mode-locking of a Cr:forsterite laser with a single-walled carbon nanotube saturable absorber mirror (SWCNT-SAM). Without compensation of intra-cavity dispersion, the self-mode-locked laser generates 11.7 ps pulses at a repetition rate of 86 MHz. The dispersion-compensated laser yields ultrashort pulses as short as 80 fs near $1.25\;{\mu}m$ at 78 MHz with average output powers up to 295 mW, representing the highest power ever reported for mode-locked solid-state lasers based on saturable absorption of SWCNTs in this spectral region.

Exposure Time and X-Ray Absorber thickness in the LIGA Process (LIGA 공정에서의 노광시간과 X선마스크 흡광체의 두께)

  • 길계환;이승섭;염영일
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.102-110
    • /
    • 1999
  • The LIGA X-ray exposure step was modelled into three inequalities, by assuming that the X-ray energy attenuated within a resist is deposited only in the localized range of the resist. From these inequalities, equations for the minimum and maximum exposure times required for a good quality microstructure were obtained. Also, an equation for the thickness of an X-ray mask absorber was obtained from the exposure requirement of threshold dose deposition. The calculation method of the synchrotron radiation power from a synchrotron radiation source was introduced and applied to an X-ray exposure step. A power from a synchrotron radiation source was introduced and applied to an X-ray exposure step/ A power function of photon energy, approximating the attenuation length of the representative LIGA resist, PMMA, and the mean photon energy of the XZ-rays incident upon an X-ray mask absorber were applied to the above mentioned equations. Consequently, the tendencies of the minimum and maximum exposure and with respect to mean photon energy and thick ness of PMMA was obtained. Additionally, the tendencies of the necessary thickness of PMMA and photon energy of the X-ray mask absorber with respect to thickness of PMMA and photon energy of the X-rays incident upon an X-ray mask absorber were examined. The minimum exposure time increases monotonically with increasing mean photon energy for the same total power density and is not a function of the thickness of resist. The minimum exposure time increases with increasing mean photon energy for the same total power density in the case of the general LIGA process, where the thickness of PMMA is thinner than the attenuation length of PMMA. Additionally, the minimum exposure time increases monotonically with increasing thickness of PMMA. The maximally exposable thickness of resist is proportional to the attenuation length of the resist at the mean photon energy with its proportional constant of ln $(Dd_m/D_{dv})$. The necessary thickness of a gold X-ray mask absorber due to absorption edges of gold, increases smoothly with increasing PMMA thickness ratio, and is independent of the total power density itself. The simplicity of the derived equations has made clearly understandable the X-ray exposure phenomenon and the correlation among the exposure times, the attenuation coefficient and the thickness of an X-ray mask absorber, the attenuation coefficient and the thickness of the resist, and the synchrotron radiation power density.

  • PDF

Modeling and validation of a parabolic solar collector with a heat pipe absorber

  • Ismail, Kamal A.R.;Zanardi, Mauricio A.;Lino, Fatima A.M.
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.299-323
    • /
    • 2016
  • Cylindrical parabolic solar concentrators of small concentration ratio are attractive options for working temperatures around $120^{\circ}C$. The heat gained can be utilized in many applications such as air conditioning, space heating, heating water and many others. These collectors can be easily manufactured and do not need to track the sun continuously. Using a heat pipe as a solar absorber makes the system more compact and easy to install. This study is devoted to modeling a system of cylindrical parabolic solar concentrators of small concentration ratio (around 5) fitted with a heat pipe absorber with a porous wick. The heat pipe is surrounded by evacuated glass tube to reduce thermal losses from the heat pipe. The liquid and vapor flow equations, energy equation, the internal and external boundary conditions were taken into consideration. The system of equations was solved and the numerical results were validated against available experimental and numerical results. The validated heat pipe model was inserted in an evacuated transparent glass tube as the absorber of the cylindrical parabolic collector. A calculation procedure was developed for the system, a computer program was developed and tested and numerical simulations were realized for the whole system. An experimental solar collector of small concentration, fitted with evacuated tube heat pipe absorber was constructed and instrumented. Experiments were realized with the concentrator axis along the E-W direction. Results of the instantaneous efficiency and heat gain were compared with numerical simulations realized under the same conditions and reasonably good agreement was found.