• Title/Summary/Keyword: Energy Window

Search Result 693, Processing Time 0.025 seconds

Improved Scatter Correction for SPECT Images : A Monte Carlo Simulation Study (SPECT 영상 산란보정 개선: 몬테칼로 시뮬레이션 연구)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Son, Hye-Kyung;Lee, Jong-Doo;Jung, Hae-Jo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.163-173
    • /
    • 2005
  • Purpose: Abutted scatter energy windows used for a triple energy window (TEW) method may provide wrong estimation of scatter. This study is to propose an extended TEW (ETEW) method, which doesn't require abutted scatter energy windows and overcomes the shortcomings of TEW method. Materials & Methods: The ETEW is a modification of the TEW which corrects for scatter by using abutted scatter rejection windows, which can overestimate or underestimate scatter. The ETEW is compared to the TEW using Monte Carlo simulated data for point sources as well as hot and cold spheres in a cylindrical water phantom. Various main energy window widths (10 %, 15 % and 20 %) were simulated. Both TEW and ETEW improved image contrast, % recovery coefficients and normalized standard deviation. Results: Both of TEW and ETEW improved image contrast and % recovery coefficients. Estimated scatter components by the TEW were not proportional to the true scatter components over the main energy windows when ones of 10 %, 15 %, and 20 % were simulated. The ETEW linearly estimated scatter components over the width of the main energy windows. Conclusion: We extended the TEW method into the method which could linearly estimate scatter components over the main energy windows.

A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building (차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구)

  • Park, Se-Hyeon;Kang, Jun-Gu;Bang, Ah-Young;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

Thermal Hydraulic Power Analysis of the HYPER Target Beam Window (미임계로 표적빔창의 열수력 해석)

  • Song Min-Geun;Ju Eun-Sun;Choi Jin-Ho;Song Tae-Young;Tak Nam-Il;Park Won-Sok
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.39-42
    • /
    • 2002
  • The nuclear transmutation technology to Incinerate the long lived radioactive nuclides and produce energy during the incineration process is believed to be one or the best solutions. HYPER(${\underline{HY}}brid {\underline{P}}ower {\underline{E}}xtraction {\underline{R}}$eactor)is the accelerator driven transmutation system which is being developed by KAERI(Korea Atomic Energy Research Institute). Lead-bismuth(Pb-Bi) is adopted as a coolant and spallation target material. In this paper, we performed the thermal-hydraulic analysis of HYPER target using the commercial code FLUENT, and also calculated thermal and mechanical stress of the beam window using the commercial code ANSYS. It is found that there is an optimum value for the window diameter and the maximum allowable beam current can be increased to 17.3 mA for the inner diameter of windows, 40 cm. Finally, the other shapes such as uniform or scanned beam were considered. The results of FLUENT calculations show that the uniform type is preferable to the other shapes of the beam in terms of the window and target cooling and the maximum window temperature is lower than that of the parabolic beam by $58 ^{\circ}C$ for the beam current, 13 mA.

  • PDF

Evaluation of Lighting Energy Saving Rate in a Small Office Space (소규모 사무공간의 조명에너지 절감율 평가에 관한 연구)

  • Kim, Han-Yong;Yun, Gyeong;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.50-58
    • /
    • 2012
  • The objective of this study is to evaluate the lighting dimming rates with various parameters of the building skin in a small office. We compared to simulated workplane illuminance and measured workplane illuminance for the base model. After that, the five veriables(the presence of vertical wall in double skin facade, the presence of windowsill, window to wall ratio(WWR), window visible transmittance, the width of double skin facade) were applied to base model, and we analyzed the simulated lighting energy saving rates. The results are listed as below. The simulated workplane illuminance results are similar to the measurement. Simulated illuminance was smaller than measured illuminance by 16.5%(60 lx). In accordance with applicable building skin parameters, lighting energy saving rate results are summarized as follows. Lighting energy saving rate of case1(windowsill height 0.7m) is higher than that of base case(windowsill and vertical wall) by 7.3% and the lighting energy saving rate of case2(no vertical wall) is higher than that of base case by 7.6% and the lighting energy saving rate of case3(no windowsill and vertical wall) is higher than that of base case by 12.4%. The lighting energy saving rate is increased by 2.3%, when window visible transmittance is increased from 70% to 86%. The lighting energy saving rate is increased by 4.6%, when we changed the WWR 70% to 90%. lighting energy savings rate is increased by 6.5%, when the width of double skin facade is reduced from 1m to 0.3m.

Heating and Cooling Energy Demand Analysis of Standard Rural House Models (농어촌 주택 표준모델의 냉난방에너지요구량 분석)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3307-3314
    • /
    • 2012
  • The annual energy demand of the standard rural house models was analyzed using the DesignBuilder. Indoor temperature set-point, U-value of outer wall, type of window, and degree of ventilation were selected as simulation parameters. In all the simulation cases, heating energy demand was higher than cooling energy demand regardless of the building size. When the lower U-value of the outer wall was applied to account for the thicker insulation layer, heating energy demand was decreased while cooling energy demand was increased. However, it is better to reduce the area of outer wall which is directly exposed to outdoor air because reducing the U-value of the outer wall is not effective in decreasing heating energy demand. Among the four different window types, the double skin window is most favorable because heating energy demand is the lowest. For a fixed infiltration rate, higher ventilation rate resulted in an increased heating energy demand and had minor impact on cooling energy demand. As long as the indoor air quality is acceptable, lower ventilation rate is favorable to reduce the annual energy demand.

An Experimental Study on the Effect of Hanji Windows on Indoor Air Temperature and Humidity Control (한지창호의 실내 온.습도 조절효과에 관한 실험적 연구)

  • Jang Gil-Soo;Park Sa-Keun;Song Min-Jeong;Shin Hoon
    • Journal of the Korean housing association
    • /
    • v.17 no.2
    • /
    • pp.125-134
    • /
    • 2006
  • The tightness of windows have devoted to the improvement of thermal insulation and energy saving in buildings. But it is known that this tightness causes some side effects such as low ventilation, low capacity to humidity and temperature control and these are not profitable for inhabitants. To act on these side effects, Korean traditional windows which are composed of Han-Ji(Koreand traditional paper) and Chang-Sal(Korean traditional wooden frame) have been studied to get a reasonable solutions for these problems. In this study, to compare the thermal and humidity control performance of current window(12 mm pair) and Korean traditional windows, frames which are made of existing window and Korean traditional windows are adapted to scale model house and then humidity and temperature of in and out of scale model house are measured and analysed. The results of this study are followings ; 1) When Korean traditional window charges 20cm(1/8 of total window area) from total window area, Han-Ji window has higher thermal insulation than that of existing window in daytime. There is the most big thermal difference when double faced with double-ply Han-Ji window is placed to mock-up house. In night-time, the temperature difference is very small so this means that Korean traditional window is good to cover direct sunlight in daytime and reduce the temperature of balcony. One faced with one-ply han-Ji window has the best humidity penetration performance among three type of Korean traditional windows. 2) When Korean window area enlarged to 40cm(1/4 of total window area), the function of 40cm width Han-Ji window is higher than that of 20cm's. This means that enlargement of Han-Ji window cover direct sunlight more and is more efficient in humidity penetration.

A Study on the Comparison of Simulation for Heat Loss According to the Installation of Windows for Openings in External Wall of One Side Corridor Type Apartments (편복도식 아파트에서 복도 외측 창호의 설치 유무에 따른 열손실 시뮬레이션 비교 연구)

  • Kim, Dae-Won;Chung, Kwang-Seop;Kim, Young-Il;Kim, Sung-Min
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • As energy becomes an important source of power for national competitive force, not only Government administrations but also private sectors are striving to save energy. The purpose of this study is to compare and evaluate energy consumption of the corridor with and without window when improving the energy environment by installing door and window on the open area of entrance for one-side corridor type apartment. The energy usage was examined through this improvement process and the energy consumption amount was compared and analyzed by simulation before and after the installation. It is desired for this study to contribute to the government's green remodeling project.

Heating & Cooling Energy Performance Analysis of an Office Building according to SHGC level of the Double & Triple Glazing with Low-e Coating (이중 및 삼중 로이창호의 일사획득에 따른 사무소건물의 냉난방에너지 성능분석)

  • Kim, Hyo-Joong;Park, Ja-Son;Shin, U-Cheul;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.90-95
    • /
    • 2008
  • An SHGC(Solar Heat Gain Coefficient) is a determinant of total flux of solar radiation coming indoor and a critical factor in evaluating heating and cooling load. U-value represents heat loss while SHGC denominates heat gain. Recently, windows with high solar gain, mid solar gain or low solar gain are being produced with the development of Low-E coating technology. This study evaluated changes in energy consumption for heating and cooling according to changes in SHGC when using double-layered Low-E glass and triple layered Low-E glass in relation to double layered clear glass as base glass. An Office was chosen for the evaluation. For deriving optical properties of each window, WINDOW 5 by LBNL, an U.S. based company. and the results were analyzed to evaluate performance of heat and cooling energy on anannual basis using ESP-r, an energy interpretation program. Compared to the energy consumption of the double layered clear glass, the double layered Low-E glass with high solar gain consumed $69.5kWh/m^2,yr$, 9% more than the double layered clear glass in cooling energy. The one with mid solar gain consumed $63.1kWh/m^2,yr$, 1% less than the base glass while the one with low solar gain consumed $57.6kWh/m^2,yr$, 10% less than the base glass. When it comes to tripled layered glass, the ones with high solar showed 2% of increase respectively while the one with mid solar gain and low solar gain resulted 5% and 11% in decrease in energy consumption due to low acquisition of solar radiation. With respect to cooling energy. it was found that the lower the SHGC. the less energy consumption becomes.

  • PDF

Impact of Horizontal Global Solar Radiation Calculation Modelson Building Energy Performance Analysis Considering Solar Heat Gain Coefficient and Window-to-wall Ratio (수평면 전일사량 산출모델이 일사열취득계수 및 창면적비를 고려한 건물 에너지 성능분석에 미치는 영향)

  • Kim, Kee Han;Oh, John Kie-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Solar applications analysis and building energy performance depend on the quality of the solar resource data available. Unfortunately, most of the weather stations do not measure solar radiation data in Korea, as a reason many researchers have studied different solar radiation estimation models and suggested to apply them to various locations in Korea. In addition, they also studied the impact of hourly global solar radiation on energy performance of an office building by comparing the simulated building energy consumptions using four different weather files, one using measured, and three estimated solar radiation from different models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM), and concluded that there was some impact on energy performance of the building due to the using different solar radiation models. However, the result cannot be applied to all other buildings since the simulated office building for that study only used limited building characteristics such as using fixed values of solar heat gain coefficient (SHGC) and window-to-wall ratio (WWR), which are significant parameters related to solar radiation that affect to the building energy consumptions. Therefore, there is a need to identify how the building energy consumption will be changed by varying these building parameters. In this study, the impact of one measured and three estimated global solar radiation on energy performance of the office building was conducted taking account of SHGC and WWR. As a result, it was identified that the impact of four different solar radiation data on energy performance of the office building was evident regardless SHGC and WWR changes, and concluded that the most suitable solar models was changed from the CRM/ZHM to the MRM as SHGC and WWR increases.

A Study on the Improvement of Energy Performance in School Buildings (학교건물의 에너지 성능개선에 관한 연구)

  • 박진철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.54-61
    • /
    • 2004
  • The purpose of this study is to improve of energy performance in school buildings. Many building renovations have mainly focused on commercial buildings and houses, but school buildings have no attention in this field although there are many buildings that show degraded energy performance and there are many old fashioned buildings which need renovation. This study was carried out through the survey, field study, energy simulation and life cycle cost analysis. The results of this study can be summarized as follows: In model building, large amount of heat were lost at the building envelope, such as non-insulated skins, window-sills and window-frame joints. According to the simulation result, about 15% of heating energy is saved by the insulating works compared to pre-renovation condition. Also, LCC analysis revealed to be more effective to select a exteria wall insulation such as a dryvit system.