• Title/Summary/Keyword: Energy System Simulator

Search Result 320, Processing Time 0.023 seconds

Development of Battery Simulator for Performance Verification of MW-class PCS (MW급 PCS 성능검증용 배터리 모의장치 개발)

  • Lee, Jong-Hak;In, Dong-Seok;Heo, Nam-Eok;Park, Young-Min
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.97-98
    • /
    • 2015
  • 에너지 저장 시스템(ESS, Energy Storage System)은 태양광(PV)발전, 풍력(WT)발전시스템 등과 같은 신재생 에너지 출력안정화, 계통 전력품질 개선, 수용가 에너지효율화 등의 분야에 이용되고 있다. 에너지 저장 시스템은 전력변환장치와 에너지 저장 장치로 구성되며, 에너지 저장 장치로 배터리를 많이 사용하고 있다. 전력변환장치 및 제어기의 설계 및 검증을 위해서는 배터리를 전력변환장치에 연계하여야 하지만 배터리의 경우 고가에 관리가 어려운 문제로 인해 일반적으로 배터리 모의 장치를 이용한다. 본 논문에서는 대용량 에너지 저장 시스템용 전력변환장치 및 제어기의 설계와 현실적인 검증이 가능한 MW급 PCS 성능검증용 배터리 모의장치를 개발하였다.

  • PDF

Transient Diagnosis and Prognosis for Secondary System in Nuclear Power Plants

  • Park, Sangjun;Park, Jinkyun;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1184-1191
    • /
    • 2016
  • This paper introduces the development of a transient monitoring system to detect the early stage of a transient, to identify the type of the transient scenario, and to inform an operator with the remaining time to turbine trip when there is no operator's relevant control. This study focused on the transients originating from a secondary system in nuclear power plants (NPPs), because the secondary system was recognized to be a more dominant factor to make unplanned turbine-generator trips which can ultimately result in reactor trips. In order to make the proposed methodology practical forward, all the transient scenarios registered in a simulator of a 1,000 MWe pressurized water reactor were archived in the transient pattern database. The transient patterns show plant behavior until turbine-generator trip when there is no operator's intervention. Meanwhile, the operating data periodically captured from a plant computer is compared with an individual transient pattern in the database and a highly matched section among the transient patterns enables isolation of the type of transient and prediction of the expected remaining time to trip. The transient pattern database consists of hundreds of variables, so it is difficult to speedily compare patterns and to draw a conclusion in a timely manner. The transient pattern database and the operating data are, therefore, converted into a smaller dimension using the principal component analysis (PCA). This paper describes the process of constructing the transient pattern database, dealing with principal components, and optimizing similarity measures.

A Study on Severe Accident Management Scheme using LOCA Sequence Database System (원자력발전소의 냉각재상실사고 특성DB를 활용한 중대사고 관리체계연구)

  • Choi, Young;Park, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.172-178
    • /
    • 2014
  • In terms of an accident management, the cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results since the Three Mile Island (TMI) accident. The objectives of this paper are to explain how to identify the plant response and cope with its vulnerabilities using the probabilistic safety assessment (PSA) quantified results and severe accident database SARDB(Severe Accident Risk Data Bank) based on sequences analysis results. Although PSA has been performed for the Korean Standard Power Plants (KSNPs), and that it considered the necessary sequences for an assessment of the containment integrity. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by a knowledge-based technique, and the expected plant behaviour. The plant model used in this paper is oriented to the cases of loss of coolant accident (LOCA) is be used as a training simulator for a severe accident management.

Virtual Arrival Mechanism for IEEE 802.15.4 beacon enabled networks (비콘을 사용하는 IEEE 802.15.4 네트워크를 위한 가상 도착 메커니즘)

  • Ha, Jae-Yeol;Lee, Jong-Wook;Kwon, Wook-Hyun;Kim, Jung-Joon;Kim, Yong-Ho;Shin, Young-Hee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.2
    • /
    • pp.45-51
    • /
    • 2005
  • For power constrained applications, IEEE 802.15.4 networks may be operated in beacon enabled mode with inactive period. h this paper, we propose the Virtual Arrival Mechanism (VAM) to avoid the congestion at the beginning of each contention access period (CAP). Virtual Arrival Mechanism (VAM) is a kind of traffic shaping that spread the traffics congested at the beginning of CAP into the whole CAP. By using VAM, collisions and energy consumption can be reduced. Finally, we evaluate the performance enhancement of VAM using NS-2 simulator.

  • PDF

Design of DC OPTIMIZER for Maximum Power Generation System of Solar Panel (태양광 패널의 최대 전력 발생 시스템을 위한 DC OPTIMIZER 설계)

  • Kim, Jeong Gyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.40-44
    • /
    • 2018
  • In this paper, the efficiency of the solar system is lowered due to the partial shading such as the environmental factors of the solar panel. In order to solve this problem, a DC OPTIMIZER is proposed for a maximum power generation system of a photovoltaic panel. The proposed DC OPTIMIZER is composed of a buck structure that performs the maximum power point tracking (MPPT) control of each module of the solar panel, thus maximizing the efficiency. In order to verify the proposed DC Optimizer, the efficiency was measured by varying the irradiance using a solar simulator instead of the solar panel. As a result, it showed high efficiency characteristics as the maximum energy conversion efficiency was 99.3% at $800w/m^2$, $900w/m^2$, and the average efficiency was 99.06% excluding $100w/m^2$. The maximum efficiency of MPPT was 99.97% at $200w/m^2$, efficiency showed excellent performance.

A Study on the Development of $CO_2$ Recycle Oxy-Fuel Combustion Heating System ($CO_2$ 재순환형 산소연소 가열시스템 개발에 관한 연구)

  • Jeong Yu-Seok;Lee Eun-Kyung;Go Chang-Bok;Jang Byung-Lok;Han Hyung-Kee;Noh Dong-Soon
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2006.05a
    • /
    • pp.412-419
    • /
    • 2006
  • An Experimental study was conducted on $CO_{2}$ recycle combustion heating system using pure oxygen instead of conventional air as an oxidant, which is thereby producing a flue gas of mostly $CO_{2}$ and water vapor($H_{2}O$ and water vapor($H_{2}O$) and resulting in higher $CO_{2}$ concentration. The advantages of the system are not only the ability to control high temperatures characteristic of oxygen combustion with recycling $CO_{2}$ but also the possibility to reduce NOx emission in the flue gas. A small scale industrial reheating furnace simulator and specially designed variable flame burner were used to characterize the $CO_{2}$ recycle oxy-fuel combustion, such as the variations of furnace pressure, temperature and composition in the flue gas during recycle. It was found that $CO_{2}$ concentration in the flue gas was about 80% without $CO_{2}$recycle. The furnace temperature and pressure and pressure were decreased due to recycle and the NOx emission was also reduced to maintain under 100ppm.

  • PDF

Thermal Performance Analysis of Combined Power Plant Using Coal Gas - Development of the Steady-state Model - (석탄가스를 사용하는 복합발전 플랜트의 열성능 해석 -정상상태 성능해석 모델 개발-)

  • 김종진;박명호;안달홍;김남호;송규소;김종영
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.8-18
    • /
    • 1996
  • As a part of comprehensive IGCC process simulation, the thermal performance analysis was performed for coal gas firing combined power plant. The combined cycle analyzed consisted of il Texaco gasifier and a low temperature gas cleanup system for the gasification block and a GE 7FA gas turbine, a HRSG and steam turbine for the power block. A steady state simulator called ASPEN(Advanced System for Process Engineering) code was used to simulate IGCC processes. Composed IGCC configuration included air integration between ASU and gas turbine and steam integration between gasifier, gas clean up and steam turbine. The results showed 20% increase in terms of gas turbine power output(MWe) comparing with natural gas case based on same heat input. The results were compared with other study results which Bechtel Canada Inc. performed for Nova Scotia power plant in 1991 and the consistency was identified within two studies. As a result, the analysing method used in this study is verified as a sound tool for commercial IGCC process evaluation.

  • PDF

Measurement and Analysis of Coal Conversion Efficiency for a Coal Recirculating Fuel Cell Simulator (석탄순환형 연료전지 모사시스템용 석탄전환율 측정 및 분석법개발에 관한 연구)

  • Lee, Sangcho;Kim, Chihwan;Hwang, Munkyeong;kim, Minseong;Kim, Kyubo;Jeon, Chunghwan;Song, Juhun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • There is a new power generation system such as direct coal fuel cell (DCFC) with a solid oxide electrolyte operated at relatively high temperature. In the system, it is of great importance to feed coal continuously into anodic electrode surface for its better contact, otherwise it would reduce electrochemical conversion of coal. For that purpose, it is required to improve the electrochemical conversion efficiency by using either rigorous mixing condition such as fluidized bed condition or just by recirculating coal particle itself successively into the reaction zone of the system. In this preliminary study, we followed the second approach to investigate how significantly particle recycle would affect the coal conversion efficiency. As a first phase, coal conversion was analyzed and evaluated from the thermochemical reaction of carbon with air under particle recirculating condition. The coal conversion efficiency was obtained from raw data measured by two different techniques. Effects of temperature and fuel properties on the coal conversion are specifically examined from the thermochemical reaction.

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

Calculation of Sputter Yield using Monte Carlo Techniques (몬테카를로 방식에 의한 스퍼터율 계산에 관한 연구)

  • 반용찬;이제희;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.59-67
    • /
    • 1998
  • In this paper, a rigorous three-dimensional Monte Carlo approach to simulate the sputter yield as a function of the incident ion energy and the incident angle as well as the atomic ejection distribution of the target is presented. The sputter yield of the target atom (Cu, Al) has been calculated for the different species of the incident atoms with the incident energy range of 10 eV ~ 100 KeV, which coincides with the previously reported experimental results. According to the simulation results, the calculated sputter yield tends to increase with the amount of the energy of the incident atoms. Our simulation revealed that the maximum sputter yield can be obtained for the incident atom with 10 KeV for the heavy ion, while the maximum sputter yield for the light ion is for the incident atoms with an energy less than 1 KeV. The sputter yield increases with angle of incidence and seems to have the maximum value at 68$^{\circ}$. For angular distributions of the sputtered particle, the atoms in the direction normal to the surface increase with angle of incidence. Furthermore, we has conducted the parallel computation on CRAY T3E supercomputer and built a GUI(Graphic User Interface) system running the sputter simulator.

  • PDF