• Title/Summary/Keyword: Energy System Simulator

Search Result 320, Processing Time 0.039 seconds

Development of FPGA Based HIL Simulator for PMS Performance Verification of Natural Liquefied Gas Carriers (액화천연가스운반선의 PMS 성능 검증을 위한 FPGA 기반 HIL 시뮬레이터 개발)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.949-955
    • /
    • 2018
  • Hardware-in-the-loop (HIL) simulation is a technique that can be employed for developing and testing complex real-time embedded systems. HIL simulation provides an effective platform for verifying power management system (PMS) performance of liquefied natural gas carriers, which are high value-added vessels such as offshore plants. However, HIL tests conducted by research institutes, including domestic shipyards, can be protracted. To address the said issue, this study proposes a field programmable gate array (FPGA) based PMS-HIL simulator that comprises a power supply, consumer, control console, and main switchboard. The proposed HIL simulation platform incorporated actual equipment data while conducting load sharing PMS tests. The proposed system was verified through symmetric, asymmetric, and fixed load sharing tests. The proposed system can thus potentially replace the standard factory acceptance tests. Furthermore, the proposed simulator can be helpful in developing additional systems for vessel automation and autonomous operation, including the development of energy management systems.

FPGA application for wireless monitoring in power plant

  • Kumar, Adesh;Bansal, Kamal;Kumar, Deepak;Devrari, Aakanksha;Kumar, Roushan;Mani, Prashant
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1167-1175
    • /
    • 2021
  • The process of automation and monitoring in industrial control system involves the use of many types of sensors. A programmable logic controller plays an important role in the automation of the different processes in the power plant system. The major control units are boiler for temperature and pressure, turbine for speed of motor, generator for voltage, conveyer belt for fuel. The power plant units are controlled using microcontrollers and PLCs, but FPGA can be the feasible solution. The paper focused on the design and simulation of hardware chip to monitor boiler, turbine, generator and conveyer belt. The hardware chip of the plant is designed in Xilinx Vivado Simulator 17.4 software using VHDL programming. The methodology includes VHDL code design, simulation, verification and testing on Virtex-5 FPGA hardware. The system has four independent buzzers used to indicate the status of the boiler, generator, turbine motor and conveyer belt in on/off conditions respectively. The GSM is used to display corresponding message on the mobile to know the status of the device in on/off condition. The system is very much helpful for the industries working on plant automation with FPGA hardware integration.

Connection Algorithm Proposal of Real Time Digital Simulator with Miniaturized HTS SMES (소형 HTS SMES와 실시간 전력계통 시뮬레이터의 연계 알고리즘 제안)

  • Kim, A-Rong;Kim, Gyeong-Hun;Kim, Kwang-Min;Park, Min-Won;Yu, In-Keun;Sim, Ki-Deok;Kim, Seok-Ho;Seong, Ki-Chul;Park, Young-Il;Kim, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.96-101
    • /
    • 2010
  • Superconducting Magnetic Energy Storage (SMES) system is one of the key technologies to overcome the voltage sag, swell, interruption and frequency fluctuation by fast response speed of current charge and discharge. In order to evaluate the characteristics of over mega joule class grid connected High Temperature Superconducting (HTS) SMES system, the authors proposed an algorithm by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the proposed algorithm, users can perform the simulation of voltage sag and frequency stabilization with a real SMES coil in real time and easily change the capacity of SMES system as much as they need. To demonstrate the algorithm, real charge and discharge circuit and active load were manufactured and experimented. The results show that the current from real system was well amplified and applied to the current source of simulation circuit in real time.

Connection algorithm of Real Time Digital Simulator with HTS SMES for power quality improvement (전력품질 개선을 위한 초전도 에너지 저장장치와 실시간 전력계통 시뮬레이터의 연계 알고리즘 개발)

  • Kim, A-Rong;Kim, Dae-Won;Kim, Gyeong-Hun;Kim, Jin-Geun;Park, Min-Won;Yu, In-Keun;Sim, Ki-Deok;Kim, Seock-Ho;Seong, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.601_602
    • /
    • 2009
  • Superconducting Magnetic Energy Storage (SMES) system is one of the key technologies to overcome the voltage sag, swell, interruption and frequency fluctuation by fast response speed of current charge and discharge. In order to evaluate the characteristics of over mega joule class grid connected High Temperature Superconducting (HTS) SMES system, the authors proposed an algorithm by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the proposed algorithm, users can perform the simulation of voltage sag and frequency stabilization with a real SMES coil in real time and easily change the capacity of SMES system as much as they need. To demonstrate the algorithm, real charge and discharge circuit and active load were manufactured and experimented. The results show that the current from real system was well amplified and applied to the current source of simulation circuit in real time.

  • PDF

The Response to Impulse Signal on Three Phase Transformer using Vector Network Analyzer (벡터 회로망 분석기 측정을 기반으로 한 3상 변압기의 시간영역 펄스 신호에 대한 응답 분석)

  • Kim, Kwangho;Jung, Jongman;Nah, Wansoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.79-84
    • /
    • 2015
  • Transformer is widely used element on power system and industrial area. Especially the transformers installed at power system are exposed to an environment of arbitrary changed. Thus the prediction of degradation and the analysis of response to impulse are important. To conduct those works, the electrical characteristics of system should be analyzed, effectively. But the analysis of electrical characteristic in electric machine level such as pole and pad-mounted transformer is almost no, thus commercial VNA (Vector Network Analyzer) is used to getting the response in wide frequency range. However, the output power of VNA is usually under 10mW, so verification for effectiveness of measuring electrically large component should be conducted, firstly. Next, after getting total S-parameter of transformer, predicting impulse response can be performed in time-domain with circuit simulator. In this paper, it is introduced that verification effectiveness of VNA using transfer function from SFRA (Sweep Frequency Response Analyzer), firstly. Next, total S-parameter, six by six matix form, was built using measured 2 port S-parameter from vector network analyzer. To get the response to impulse which is defined by IEC 60060-1, time-domain simulation is conducted to ADS (Advenced Design System) circuit simulator.

A study on the Normal Steady State Operation Characteristics of PV System Based on the Test Device (태양광전원용 시험장치를 이용한 정상상태 운용특성에 관한 연구)

  • Hasan, Md.Mubdiul;Munkbaht, Munkbaht;Kim, Byung-Ki;Rho, Dae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.512-516
    • /
    • 2012
  • Recently the Korean government's green energy growth policy has been taken at the national level due to the sufficient supply of renewable energy. Some specific technique should be taken in consideration for the operation of the grid voltage and power quality management. In this case, there may have some chance of operational problems. Typical problems arise when grid-connected solar power produced by Pacific sunshine. The power flow in the reverse direction can create overvoltage on the distribution line and gives value of malfunction on the system. Line voltage and overvoltage adjustment practice can stop these symptoms occurred. Under these circumstances, this paper presents an interconnection test devices for photovoltaic(PV) systems composed of distribution system simulator, PV system simulator and control and monitoring systems using the LabVIEW S/W, and simulates the customer voltage characteristics considering the 3 parameters on the introduction capacity for PV systems, system configuration and Power factor. This paper also proposes a new calculation algorithm for voltage profile to make comparison between calculation values and test device values. The results show that the simulation results for the normal operation characteristics of PV systems which are very practical and effective.

  • PDF

A Study on the Output Power Enhancement of GaAs/AlGaAs Solar Cell using Concentration Method (집광에 의한 GaAs/AlGaAs태양전지의 출력 증대 연구)

  • Lee, Dong-Ho;Kim, Young-Hwan;Song, Jin-Dong;Kim, Seong-Il
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.26-31
    • /
    • 2009
  • Using MBE growth method, GaAs/AlGaAs solar cell structure was grown. Deposited electrodes are Au/Ni/Ge for n-type and Au/Pt/Ti for p-type electrodes were deposited by E-beam evaporator. Indoor light concentrators were devised and fabricated in order to concentrate artificial solar rays. Also mirror and prism and Fresnel lens concentration system with solar simulator were devised and fabricated. Results of solar cell characteristics were measured with shutting system which can control the amount of light. Maximum power density was 2.13 W/$cm^2$ and maximum concentration was 124 sun, when mirror with Fresnel lens was used at $7854\;mm^2$ of shutter hole.

  • PDF

Harmonic Simulation and Measurement Analysis for a Skyscraper (초고층빌딩에 대한 고조파 시뮬레이션 및 실측데이터 분석)

  • Cho, Soo-Hwan;Lee, Han-Sang;Jung, Jae-Ahn;Jang, Gil-Soo;Lee, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.265-266
    • /
    • 2008
  • The interest on harmonics which is one of the matters related with power quality problem is not limited in only the system where the large scale industrial load is connected. The harmonics phenomenon not only causes the malfunction of devices, but also lowers the energy efficiency of power system. This paper focuses on the harmonic analysis process to establish the harmonic mitigation method, considering the harmonics distortion as a major cause to reduce the energy efficiency of a skyscraper. A system diagram of building is modelled with PSCAD simulator. Based on the harmonic analysis results of it, the electrical locations with the high priority to install the mitigating devices are selected. Finally, the result of PSCAD simulations and the site-measured data are compared, verifying that they reach a common conclusion.

  • PDF

Computer Modeling of the Power Generation System Using Polymer Electrolyte Fuel Cell (고분자 전해질형 연료전지 발전 시스템의 전산모사)

  • Baek, Young-Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.460-466
    • /
    • 2008
  • In this study, a computer modeling work has been performed for the power generation system using polymer electrolyte fuel cell with Aspen Plus general purpose chemical process simulator. Stoichiometric reactor module was used for the modeling of reformer for the production of hydrogen. For the modeling of the electrochemical reaction, Gibbs reactor module built-in Aspen Plus was utilized. SRK equation of state model was selected for the proper simulation of the overall fuel cell system.

Electrical Characteristics of Mono Crystalline Silicon Solar Cell for Concentrating PV System using Fresnel Lenses (프레넬 렌즈를 이용한 집광 시 단결정 실리콘 태양전지의 전기적 특성)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Yu, Gwon-Jong;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.218-219
    • /
    • 2007
  • Silicon feed stock shortage have acted as major restraints for growth of photovoltaic industry. Concentrating photovoltaic (CPV) system will reduce the use of silicon PV materials. This paper presents the application possibility of mono-crystalline silicon solar cell, which has increased in market share, for PV concentrator. We measured the power of solar cell using sun simulator and I-V curve tracer and compared the results. The comparison of results showed that the concentrated solar cell generated the power more approximately 7 times than without concentration in spite of non-heat sink. If CPV technology included heat sink combines already developed PV tracking system, it will have a merit economically.

  • PDF