• 제목/요약/키워드: Energy System Optimization

검색결과 928건 처리시간 0.031초

Power Sharing and Cost Optimization of Hybrid Renewable Energy System for Academic Research Building

  • Singh, Anand;Baredar, Prashant
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1511-1518
    • /
    • 2017
  • Renewable energy hybrid systems look into the process of choosing the finest arrangement of components and their sizing with suitable operation approach to deliver effective, consistent and cost effective energy source. This paper presents hybrid renewable energy system (HRES) solar photovoltaic, downdraft biomass gasifier, and fuel cell based generation system. HRES electrical power to supply the electrical load demand of academic research building sited in $23^{\circ}12^{\prime}N$ latitude and $77^{\circ}24^{\prime}E$ longitude, India. Fuzzy logic programming discover the most effective capital and replacement value on components of HRES. The cause regarding fuzzy logic rule usage on HOMER pro (Hybrid optimization model for multiple energy resources) software program finds the optimum performance of HRES. HRES is designed as well as simulated to average energy demand 56.52 kWh/day with a peak energy demand 4.4 kW. The results shows the fuel cell and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The total power generation of HRES is 23,794 kWh/year to the supply of the load demand is 20,631 kWh/year with 0% capacity shortage.

Radiation shielding optimization design research based on bare-bones particle swarm optimization algorithm

  • Jichong Lei;Chao Yang;Huajian Zhang;Chengwei Liu;Dapeng Yan;Guanfei Xiao;Zhen He;Zhenping Chen;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2215-2221
    • /
    • 2023
  • In order to further meet the requirements of weight, volume, and dose minimization for new nuclear energy devices, the bare-bones multi-objective particle swarm optimization algorithm is used to automatically and iteratively optimize the design parameters of radiation shielding system material, thickness, and structure. The radiation shielding optimization program based on the bare-bones particle swarm optimization algorithm is developed and coupled into the reactor radiation shielding multi-objective intelligent optimization platform, and the code is verified by using the Savannah benchmark model. The material type and thickness of Savannah model were optimized by using the BBMOPSO algorithm to call the dose calculation code, the integrated optimized data showed that the weight decreased by 78.77%, the volume decreased by 23.10% and the dose rate decreased by 72.41% compared with the initial solution. The results show that the method can get the best radiation shielding solution that meets a lot of different goals. This shows that the method is both effective and feasible, and it makes up for the lack of manual optimization.

RIS Selection and Energy Efficiency Optimization for Irregular Distributed RIS-assisted Communication Systems

  • Xu Fangmin;Fu Jinzhao;Cao HaiYan;Hu ZhiRui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1823-1840
    • /
    • 2023
  • In order to improve spectral efficiency and reduce power consumption for reconfigurable intelligent surface (RIS) assisted wireless communication systems, a joint design considering irregular RIS topology, RIS on-off switch, power allocation and phase adjustment is investigated in this paper. Firstly, a multi-dimensional variable joint optimization problem is established under multiple constraints, such as the minimum data requirement and power constraints, with the goal of maximizing the system energy efficiency. However, the proposed optimization problem is hard to be resolved due to its property of nonlinear nonconvex integer programming. Then, to tackle this issue, the problem is decomposed into four sub-problems: topology design, phase shift adjustment, power allocation and switch selection. In terms of topology design, Tabu search algorithm is introduced to select the components that play the main role. For RIS switch selection, greedy algorithm is used to turn off the RISs that play the secondary role. Finally, an iterative optimization algorithm with high data-rate and low power consumption is proposed. The simulation results show that the performance of the irregular RIS aided system with topology design and RIS selection is better than that of the fixed topology and the fix number of RISs. In addition, the proposed joint optimization algorithm can effectively improve the data rate and energy efficiency by changing the propagation environment.

최적화 기법에 의한 발전시뮬레이션 방법론의 개발 및 전원확충계획 문제에의 적용 (The Development of Production Simulation Methodology by Optimization Technique and It's Application to Utility Expansion Planning)

  • 송길영;오광해;김용하;차준민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.793-796
    • /
    • 1996
  • This study proposes a new algorithm which performs a production simulation under various constraints and maintains computational efficiency. In order to consider the environmental and operational constraints, the proposed algorithm is based on optimization techniques formulated in LP form In the algorithm, "system characteristic constraints" reflect the system characteristics such as LDC shape, unit loading order and forced outage rate. By using the concept of Energy Invariance Property and two operational rules i.e. Compliance Rule for Emission Constraint, Compliance Rule for Limited Energy of Individual Unit, the number of system characteristic constraints is appreciably reduced. As a solution method of the optimization problem, the author uses Karmarkar's method which performs effectively in solving large scale LP problem. The efficiency of production simulation is meaningful when it is effectively used in power system planning. With the proposed production simulation algorithm, an optimal expansion planning model which can cope with operational constraints, environmental restriction, and various uncertainties is developed. This expansion planning model is applied to the long range planning schemes by WASP, and determines an optimal expansion scheme which considers the effect of supply interruption, load forecasting errors, multistates of unit operation, plural limited energy plants etc.

  • PDF

Communication Resource Allocation Strategy of Internet of Vehicles Based on MEC

  • Ma, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.389-401
    • /
    • 2022
  • The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.

초음파 플립칩 접합 모듈의 위상최적화 설계 및 성능 실험 (Design by Topology Optimization and Performance Test of Ultrasonic Bonding Module for Flip-Chip Packaging)

  • 김지수;김종민;이수일
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.113-119
    • /
    • 2012
  • Ultrasonic bonding is the novel packaging method for flip-chip with high yield and low-temperature bonding. The bonding module is a core part of the bonding machine, which can transfer the ultrasonic energy into the bonding spot. In this paper, we propose topology optimization technique which can make new design of boding modules due to the constraints on resonance frequency and mode shapes. The designed bonding module using topology optimization was fabricated in order to evaluate the bonding performance and reliable operation during the continuous bonding process. The actual production models based on the proposed design satisfied the target frequency range and ultrasonic power. The bonding test was performed using flip-chip with lead-free Sn-based bumps, the results confirmed that the bonding strength was sufficient with the designed bonding modules. Also the performance degradation of the bonding module was not observed after the 300-hour continuous process with bonding conditions.

풍력단지의 최대 운동에너지 보유를 위한 예비력 분배 (Reserve distribution to maximize the kinetic energy of a wind power plant)

  • 윤기환;이진식;이혜원;강용철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.179-180
    • /
    • 2015
  • High wind penetration might cause the frequency stability problem because a wind power plant (WPP) is operating in a maximum power tracking mode to extract the maximal energy from wind and thus does not react to the system frequency variation. Therefore, the system operators encourage a WPP to participate in frequency control, which includes inertia/orl and primary control. The frequency support capability of a WPP depends on the amount of kinetic energy (KE) and reserve. This paper formulates an optimization problem to maximize KE while retaining the required reserve. The proposed optimization problem would allow wind generators (WGs) with a smaller wind speed to retaine more KE. The performance of the proposed optimization problem was investigated in a 100-MW WPP consisting of 20 units of 5-MW permanent magnet synchronous generators using an EMTP-RV simulator. The results show that the proposed optimization problem successfully improves the frequency nadir more than a conventional reserve allocation that distributes WGs proportional to the current output.

  • PDF

Real-time Optimal Operation Planning of Isolated Microgrid Considering SOC balance of ESS

  • Lee, Yoon Cheol;Shim, Ji Yeon;Kim, Jeongmin;Ryu, Kwang Ryel
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권10호
    • /
    • pp.57-63
    • /
    • 2018
  • The operating system for an isolated microgrid, which is completely disconnected from the central power system, aims at preventing blackouts and minimizing power generation costs of diesel generators through efficient operation of the energy storage system (ESS) that stores energy produced by renewable energy generators and diesel generators. In this paper, we predict the amount of renewable energy generation using the weather forecast and build an optimal diesel power generation plan using a genetic algorithm. In order to avoid inefficiency due to inaccurate prediction of renewable energy generation, our search algorithm imposes penalty on candidate diesel power generation plans that fail to maintain the SOC (state of charge) of ESS at an appropriate level. Simulation experiments show that our optimization method for maintaining an appropriate SOC balance can prevent the blackout better when compared with the previous method.

유동시스템의 형상 최적화에 성장-변형률법의 적용 (The Application of the Growth-Strain Method to the Shape Optimization of the Flow System)

  • 맹주성;한석영;김종필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.533-538
    • /
    • 2001
  • In general, shape optimization design of the flow system has done to obtain the effects, which are required in the engineering fields. Most of these designs are accomplished by empirical or numerical analysis. But, in empirical analysis case, it is difficult to obtain an optimal shape in the feasible design region. And, in numerical method case, it usually needs many design parameters, because of the required object-function. In this paper, we present a newly numerical analysis, the growth-strain method having only one design parameter. That optimizes a shape by distributing a design parameter such as dissipation energy to be uniformed in the flow system. Also, we apply this shape design process to the three-flow systems, and then we identify that the resulting shape approaches the known optimal shape in the numerical values. Consequently, we confirm that the proposed method is very efficient and practical in the shape optimization of the flow system.

  • PDF