• Title/Summary/Keyword: Energy Source

Search Result 5,794, Processing Time 0.031 seconds

Performance Analysis of Pyrotechnic Devices on the Reliability of Thermal Batteries (열전지의 신뢰성에 미치는 파이로테크닉 부품의 특성분석)

  • Cheong, Hae-Won;Kang, Sung-Ho;Kim, Kiyoul;Cho, Jang-Hyeon;Ryu, Byungtae;Baek, Seung-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-123
    • /
    • 2019
  • Thermal batteries are also called molten-salt batteries as the electrolyte is mainly composed of molten salt. The molten-salt electrolyte is a solid that does not conduct electricity at room temperature, but when it is melted by a pyrotechnic heat source, it becomes an excellent ionic conductor. Thermal batteries are a kind of pyrotechnic battery because they operate only when the solid electrolyte is melted by the heat energy provided by pyrotechnic materials. Pyrotechnic components used in a thermal battery include heat sources, fuse strips, and an igniter. The reliability of these pyrotechnic components critically affects the reliability and performance of the battery that must supply electricity stably to guided munitions even under extreme environmental conditions. Different igniter types offer different advantages: notch-type igniters offer improved ignition probability, whereas film-type igniters offer improved safety. The addition of metal oxides to the heat paper could improve the burn rate, and the ignition reliability could be greatly improved by using it with a flame igniter at the same time. Using a two-step reduction process, high-purity Fe particles in coral form can be safely obtained.

Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs

  • Yoo, J.S.;Cho, K.H.;Hong, J.S.;Jang, H.S.;Chung, Y.H.;Kwon, G.T.;Shin, D.G.;Kim, Y.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.387-394
    • /
    • 2019
  • Objective: This study was to investigate the nutrient ileal digestibility of dried mealworm (Tenebrio molitor) larvae and compare with those of three animal protein by-products in growing pigs. Methods: A total of 12 crossbred ($[Landrace{\times}Yorkshire]{\times}Duroc$) growing pigs with average body weights of $24.12{\pm}0.68kg$ were surgically equipped with simple T-cannulas after being deprived of feed for 24 h according to published surgical procedures. These pigs had a recovery period of two weeks. A total of 12 pigs were assigned to individual metabolic crates and allotted to one of four treatments with 3 replicates in a fully randomized design. Dietary treatments included the following: i) Fish meal, corn-vegetable by-product basal diet+9.95% fish meal; ii) Meat meal, corn-vegetable by-product basal diet+9.95% meat meal; iii) Poultry meal, cornvegetable by-product basal diet+9.95% poultry meal; iv) Tenebrio molitor, corn-vegetable by-product basal diet+9.95% dried Tenebrio molitor larvae. Results: Results showed that the apparent ileal digestibility (AID) of Lys was higher (p<0.05) in pigs fed Tenebrio molitor diet than that in pigs fed fish meal diet. Pigs fed Tenebrio molitor diet showed increased (p<0.05) AID of His and Arg compared to pigs fed Fish meal or Meat meal diet. The AID of Cys was increased (p<0.05) in pigs fed poultry meal and Tenebrio molitor diets compared to that in pigs fish meal diet. Pigs fed meat meal, poultry meal, and Tenebrio molitor diets showed higher (p<0.05) standardized ileal digestibility (SID) of total energy compared to pigs fed fish meal diet. The SID of Arg was higher (p<0.05) in pigs fed Tenebrio molitor diet than that in pigs fed fish meal or meat meal diet. Furthermore, pigs fed poultry meal or Tenebrio molitor diets showed increased (p<0.05) SID of Cys compared to pigs fed fish meal diet. Conclusion: In conclusion, providing pigs with diets that contained Tenebrio molitor larvae meal improved AID and SID of nutrients as well as essential and non-essential amino acids. The digestibility of dried mealworm larvae protein and its utilization in vivo are also good. Therefore, dried mealworm larvae protein can be used as protein source at 10% level in growing pigs.

Forecasting daily peak load by time series model with temperature and special days effect (기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jin Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.161-171
    • /
    • 2019
  • Varied methods have been researched continuously because the past as the daily maximum electricity demand expectation has been a crucial task in the nation's electrical supply and demand. Forecasting the daily peak electricity demand accurately can prepare the daily operating program about the generating unit, and contribute the reduction of the consumption of the unnecessary energy source through efficient operating facilities. This method also has the advantage that can prepare anticipatively in the reserve margin reduced problem due to the power consumption superabundant by heating and air conditioning that can estimate the daily peak load. This paper researched a model that can forecast the next day's daily peak load when considering the influence of temperature and weekday, weekend, and holidays in the Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, and NNETAR model. The results of the forecasting performance test on the model of this paper for a Seasonal Reg-ARIMA model and NNETAR model that can consider the day of the week, and temperature showed better forecasting performance than a model that cannot consider these factors. The forecasting performance of the NNETAR model that utilized the artificial neural network was most outstanding.

A Mathematical Programming Method for Minimization of Carbon Debt of Bioenergy (바이오에너지의 탄소부채 최소화를 위한 수학적 계획법)

  • Choi, Soo Hyoung
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.269-274
    • /
    • 2021
  • Bioenergy is generally considered to be one of the options for pursuing carbon neutrality. However, for a period of time, combustion of harvested plant biomass inevitably causes more carbon dioxide in the atmosphere than combustion of fossil fuels. This paper proposes a method that predicts and minimizes the total amount and payback period of this carbon debt. As a case study, a carbon cycle impact assessment was performed for immediate switching of the currently used fossil fuels to biomass. This work points out a fundamental vulnerability in the concept of carbon neutrality. As an action plan for the sustainability of bioenergy, formulas for afforestation proportional to the decrease in the forest area and surplus harvest proportional to the increase in the forest mass are proposed. The results of optimization indicate that the carbon debt payback period is about 70 years, and the carbon dioxide in the atmosphere increases by more than 50% at a maximum and 3% at a steady state. These are theoretically predicted best results, which are expected to be worse in reality. Therefore, biomass is not truly carbon neutral, and it is inappropriate as an energy source alternative to fossil fuels. The method proposed in this work is expected to be able to contribute to the approach to carbon neutrality by minimizing present and future carbon debt of the bioenergy that is already in use.

The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems (반추위 미생물생태계에서의 글루탐산을 생성하는 미생물의 역할)

  • Mamuad, Lovelia L.;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.520-526
    • /
    • 2021
  • Microbial protein is one of the sources of protein in the rumen and can also be the source of glutamate production. Glutamic acid is used as fuel in the metabolic reaction in the body and the synthesis of all proteins for muscle and other cell components, and it is essential for proper immune function. Moreover, it is used as a surfactant, buffer, chelating agent, flavor enhancer, and culture medium, as well as in agriculture for such things as growth supplements. Glutamic acid is a substrate in the bioproduction of gamma-aminobutyric acid (GABA). This review provides insights into the role of glutamic acid and glutamic acid-producing microorganisms that contain the glutamate decarboxylase gene. These glutamic acid-producing microorganisms could be used in producing GABA, which has been known to regulate body temperature, increase DM intake and milk production, and improve milk composition. Most of these glutamic acid and GABA-producing microorganisms are lactic acid-producing bacteria (LAB), such as the Lactococcus, Lactobacillus, Enterococcus, and Streptococcus species. Through GABA synthesis, succinate can be produced. With the help of succinate dehydrogenase, propionate, and other metabolites can be produced from succinate. Furthermore, clostridia, such as Clostridium tetanomorphum and anaerobic micrococci, ferment glutamate and form acetate and butyrate during fermentation. Propionate and other metabolites can provide energy through conversion to blood glucose in the liver that is needed for the mammary system to produce lactose and live weight gain. Hence, health status and growth rates in ruminants can be improved through the use of these glutamic acid and/or GABA-producing microorganisms.

Scenario-based Vulnerability Assessment of Hydroelectric Power Plant (시나리오 기반 수력플랜트 설비의 취약성 평가)

  • Nam, Myeong Jun;Lee, Jae Young;Jung, Woo Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.9-21
    • /
    • 2021
  • Recently, the importance of eco-friendly power generation facility using renewable energy has newly appeared. Hydropower plant is a very important source of electricity generation and supply which is very important to secure safety because it is commonly connected with multi facility and operated on a large scale. In this study, a scenario-based analysis method was suggested to assess vulnerability of a penstock system caused by water hammer commonly occurred in the operation of hydropower plants. A hypothetical hydropower plant was used to demonstrate the applicability of a transient analysis model. In order to verify reliability of the model, the prediction of pressure behaviors were compared with the results of commercial model (SIMSEN) and measured data, then a real hydroelectric power plant was applied to develop all potential water hammer scenarios during the actual operation. The scenario-based simulation and vulnerability assessment for water hammer in the penstock system were performed with internal and external load conditions. The simulation results indicated that the vulnerability of a penstock system was varied with the operating conditions of hydropower facilities and significantly affected by load combination consisting of different load scenarios. The proposed numerical method could be an useful tool for the vulnerabilityty assessment of the hydropower plants due to water hammer.

A basic study on the hazard of hydrogen feul cell vehicles in road tunnels (도로터널에서 수소차 위험에 관한 기초적 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.47-60
    • /
    • 2021
  • Hydrogen is a next-generation energy source, and according to the roadmap for activating the hydrogen economy, it is expected that industries to stably produce, store, and transport of hydrogen as well as the supply of hydrogen fuel cell vehicles will be made rapidly. Accordingly, safety measures for accidents of hydrogen vehicles in confined spaces such as tunnels are required. In this study, as part of a study to ensure the safety of hydrogen fuel cell vehicles in road tunnels, a basic investigation and research on the risk of fire and explosion due to gas leakage and hydrogen tank rupture among various hazards caused by hydrogen fuel cell vehicle accidents in tunnels was conducted. The following results were obtained. In the event of hydrogen fuel cell vehicle accidents, the gas release rate depends on the orifice diameter of TPRD, and when the gas is ignited, the maximum heat release rate reaches 3.22~51.36 MW (orifice diameter: 1~4 mm) depending on the orifice diameter but the duration times are short. Therefore, it was analyzed that there was little increase in risk due to fire. As the overpressure of the gas explosion was calculated by the equivalent TNT method, in the case of yield of VCE of 0.2 is applied, the safety threshold distance is analyzed to be about 35 m, and number of the equivalent fatalities are conservatively predicted to reach tens of people.

VENTOS-Based Platoon Driving Simulations Considering Variability (가변성을 고려하는 VENTOS 기반 군집 자율주행 시뮬레이션)

  • Kim, Youngjae;Hong, Jang-Eui
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • In platoon driving, several autonomous vehicles communicate to exchange information with each other and drive in a single cluster. The platooning technology has various advantages such as increasing road traffic, reducing energy consumption and pollutant emission by driving in short distance between vehicles. However, the short distance makes it more difficult to cope with an emergency accident, and accordingly, it is difficult to ensure the safety of platoon driving, which must be secured. In particular, the unexpected situation, i.e., variability that may appear during driving can adversely affect the safety of platoon driving. Because such variability is difficult to predict and reproduce, preparing safety guards to prevent risks arising from variability is a challenging work. In this paper, we studied a simulation method to avoid the risk due to the variability that may occur while platoon driving. In order to simulate safe platoon driving, we develop diverse scenarios considering the variability, design and apply safety guards to handle the variability, and extends the detail functions of VENTOS, an open source platooning simulator. Based on the simulation results, we have confirmed that the risks caused form the variability can be removed, and safe platoon driving is possible. We believe that our simulation approach will contribute to research and development to ensure safety in platoon driving.

Patent Analysis on Fuel Cell By-Product Utilization Technology for Operating Expenditure Reduction of Hydrogen Residential Buildings (수소에너지 주거건물의 운영비용 감축을 위한 연료전지 발전 부산물 활용기술에 관한 특허분석)

  • Ji, SangHoon;Kim, WeonJae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.488-493
    • /
    • 2020
  • The demand for hydrogen, which is considered an environmentally friendly energy source, is increasing, and at the same time, the fuel cell market is increasing continuously. This study aimed to establish a strategy for securing intellectual property rights on fuel cell by-product utilization technology for operating expenditure reduction of hydrogen-powered residential buildings. In this patent analysis, this study investigated Korean, American, Japanese, and European patents filed/published/registered by October 2019 and established a technical classification system and classification criteria through expert discussion. To reduce the operating expenditure of hydrogen-powered residential buildings, intellectual property rights will be improved using systems and methodologies involving cathode-side purified air, product water, and oxygen-depleted air captured with the dead-end mode operation of polymer electrolyte fuel cells.

Treatment Technology of N2O by using Bunsen Premixed Flame (분젠 예혼합 화염을 활용한 아산화질소 처리기술에 관한 연구)

  • Jin, Si Young;Seo, Jaegeun;Kim, Heejae;Shin, Seung Hwan;Nam, Dong Hyun;Kim, Sung Min;Kim, Daehae;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.153-160
    • /
    • 2021
  • Nitrous oxide is a global warming substance and is known as the main cause of the destruction of the ozone layer because its global warming effect is 310 times stronger than carbon dioxide, and it takes 120 years to decompose. Therefore, in this study, we investigated the characteristics of NOx emission from N2O reduction by thermal decomposition of N2O. Bunsen premixed flames were adopted as a heat source to form a high-temperature flow field, and the experimental variables were nozzle exit velocity, co-axial velocity, and N2O dilution rate. NO production rates increased with increasing N2O dilution rates, regardless of nozzle exit velocities and co-axial flow rates. For N2O, large quantities were emitted from a stable premixed flame with suppressed combustion instability (Kelvin Helmholtz instability) because the thermal decomposition time is not sufficient with the relatively short residence time of N2O near the flame surface. Thus, to improve the reduction efficiency of N2O, it is considered effective to increase the residence time of N2O by selecting the nozzle exit velocities, where K-H instability is generated and formed a flow structure of toroidal vortex near the flame surface.