• Title/Summary/Keyword: Energy Scenarios

검색결과 622건 처리시간 0.034초

THE DEVELOPMENT OF A SAFETY ASSESSMENT APPROACH AND ITS IMPLICATION ON THE ADVANCED NUCLEAR FUEL CYCLE

  • Hwang, Yong-Soo;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.37-46
    • /
    • 2010
  • The development of advanced nuclear fuel cycle(ANFC) technology is essential to meet the national mission for energy independence via a nuclear option in Korea. The action target is to develop environmentally friendly, cost-effective measures to reduce the burden of long term disposal. The proper scenarios regarding potential radionuclide release from a repository have been developed in this study based on the advanced korean Reference Disposal System(A-KRS). To predict safety for the various scenarios, a new assessment code based on the GoldSim software has also been developed. Deterministic analysis indicates an environmental benefit from the ANFC as long as the solid waster from the ANFC act as a proper barrier.

2050 에너지기술전망 (2015판) 및 국제에너지기구 활동 보고 (Report of 2050 Energy Technology Perspectives 2015 and Activities on IEA/ECERC Delegation of Korea)

  • 배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.279-282
    • /
    • 2015
  • Energy Technology Perspectives (ETP) has provided the current status of energy system, technology developments and external events that have changed ETP scenario since 2006. The three scenarios are presented in four different fields (power generation, transport, industry, building). Energy efficiency improvement of energy system and the new system that can solve the increasing energy demand and the emissions are introduced. The activities on IEA/ECERC delegation of Korea will be also reported in this presentation.

  • PDF

An Overall Investigation of Break Simulators for LOCA Scenarios in Integral Effect Tests

  • Kim, Yeon-Sik;Park, Hyun-Sik
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.73-88
    • /
    • 2014
  • Various studies on the critical flow models for sub-cooled and/or saturated water were reviewed, especially on Fauske, Moody, and Henry for basic theoretical models; Zaloudek for insight into physical phenomena for a critical flow in an orifice type flow path; Sozzi & Sutherland for a critical flow test of saturated and sub-cooled water at high pressure for orifice and nozzles; and a Marviken test on a full-scale critical flow test. In addition, critical flow tests of sub-cooled water for the break simulators in integral effect test (IET) facilities were also investigated, and a hybrid concept using Moody's and Fauske's models was considered by the authors. In the comparison of the models for the selected test data, discussions of the effect of the diameters, predictions of the critical flow models, and design aspects of break simulator for SBLOCA scenarios in the IET facilities were presented. In the effect of diameter on the critical flow rate with respect to all dimensional scales, it was concluded that the effect of diameter was found irrespective of diameter sizes. In addition, the diameter effect on slip ratio affecting the critical flow rate was suggested. From a comparison of the critical flow models and selected test data, the Henry-Fauske model of the MARS-KS code was found to be the best model predicting the critical flow rate for the selected test data under study.

Multi-unit Level 3 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Kim, Sung-yeop;Jung, Yong Hun;Han, Sang Hoon;Han, Seok-Jung;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1246-1254
    • /
    • 2018
  • The importance of performing Level 3 probabilistic safety assessments (PSA) along with a general interest in assessing multi-unit risk has been sharply increasing after the Fukushima Daiichi nuclear power plant (NPP) accident. However, relatively few studies on multi-unit Level 3 PSA have been performed to date, reflecting limited scenarios of multi-unit accidents with higher priority. The major difficulty to carry out a multi-unit Level 3 PSA lies in the exponentially increasing number of multi-unit accident combinations, as different source terms can be released from each NPP unit; indeed, building consequence models for the astronomical number of accident scenarios is simply impractical. In this study, a new approach has been developed that employs the look-up table method to cover every multi-unit accident scenario. Consequence results for each scenario can be found on the table, established with a practical amount of effort, and can be matched to the frequency of the scenario. Preliminary application to a six-unit NPP site was carried out, where it was found that the difference between full-coverage and cut-off cases could be considerably high and therefore influence the total risk. Additional studies should be performed to fine tune the details and overcome the limitations of the approach.

상향식 모형을 이용한 대학의 온실가스 감축 잠재량 평가 (Analysis of Greenhouse Gas Reduction Potentials in a University using Bottom-up Model)

  • 유정화;박년배;조미현;전의찬
    • 한국기후변화학회지
    • /
    • 제3권3호
    • /
    • pp.183-193
    • /
    • 2012
  • 에너지분석모형인 LEAP을 활용하여 국내 대학을 대상으로 에너지 사용 및 온실가스 배출 현황과 감축 잠재량을 분석하였다. 대학의 온실가스 감축 잠재량 산정을 위해 먼저 에너지 사용을 용도별로 구분하고, 용도별 저감 방법을 제시하여 LEAP 모형을 통해 2020년까지의 감축 잠재량을 산정하였다. 온실가스 감축 잠재량 예측을 위한 시나리오는 총 4개로, 추가적인 에너지 감축 활동이 없을 때의 에너지 수요량을 예측한 기준 시나리오와 LED로의 조명 교체, 고효율 기기로의 교체를 통한 에너지 저감 시나리오, 두 가지를 모두 시행한 통합 시나리오로 구성하였다. 시나리오에 따른 결과로는 통합 시나리오를 통해 2020년 온실가스 배출량이 $14,916tCO_2eq$로 2010년 대비 43.7% 증가하는 데 그치는 것을 확인할 수 있었다. 즉, S대학교의 온실가스 배출량은 에너지 사용 저감 노력으로 기준 시나리오 대비 약 23.7%의 온실가스 배출량을 줄일 수 있었다. 또한 전자제품의 효율 향상 연구를 통해 더 많은 에너지 절감 효과를 확인하였다. 이와 함께 대학 구성원들의 의식 변화 및 직접적인 에너지 절약 실천이 이루어진다면 그 효과를 극대화 시킬 수 있을 것으로 기대된다.

AR5 기후변화 시나리오에 따른 소양강댐 유역 댐유입량 및 증발산량의 변화 분석 (Analysis of the Change of Dam Inflow and Evapotranspiration in the Soyanggang Dam Basin According to the AR5 Climate Change Scenarios)

  • 도연수;김광섭
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.89-99
    • /
    • 2018
  • This study analyzed the change of the dam inflow and evapotranspiration in the Soyanggang dam basin using the results of 26 CMIP5 GCMs based on AR5 RCP 4.5 and RCP 8.5 scenarios. The SWAT model was used to simulate the dam inflow and evapotranspiration in the target watershed. The simulation was performed during 2010~2016 as the reference year and during 2010~2099 as the analysis period. Bias correction of input data such as precipitation and air temperature were conducted for the reference period of 2006~2016. Results were analyzed for 3 different periods, 2025s (2010~2040), 2055s (2041~2070), and 2085s (2071~2099). It demonstrated that the change of dam inflow gradually increases 9.5~15.9 % for RCP 4.5 and 13.3~29.8 % for RCP 8.5. The change of evapotranspiration gradually increases 1.6~8.6 % for RCP 4.5 and 1.5~8.5 % for RCP8.5.

Energy-Efficiency of Distributed Antenna Systems Relying on Resource Allocation

  • Huang, Xiaoge;Zhang, Dongyu;Dai, Weipeng;Tang, She
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1325-1344
    • /
    • 2019
  • Recently, to satisfy mobile users' increasing data transmission requirement, energy efficiency (EE) resource allocation in distributed antenna systems (DASs) has become a hot topic. In this paper, we aim to maximize EE in DASs subject to constraints of the minimum data rate requirement and the maximum transmission power of distributed antenna units (DAUs) with different density distributions. Virtual cell is defined as DAUs selected by the same user equipment (UE) and the size of virtual cells is dependent on the number of subcarriers and the transmission power. Specifically, the selection rule of DAUs is depended on different scenarios. We develop two scenarios based on the density of DAUs, namely, the sparse scenario and the dense scenario. In the sparse scenario, each DAU can only be selected by one UE to avoid co-channel interference. In order to make the original non-convex optimization problem tractable, we transform it into an equivalent fractional programming and solve by the following two sub-problems: optimal subcarrier allocation to find suitable DAUs; optimal power allocation for each subcarrier. Moreover, in the dense scenario, we consider UEs could access the same channel and generate co-channel interference. The optimization problem could be transformed into a convex form based on interference upper bound and fractional programming. In addition, an energy-efficient DAU selection scheme based on the large scale fading is developed to maximize EE. Finally, simulation results demonstrate the effectiveness of the proposed algorithm for both sparse and dense scenarios.

LEAP 모형을 이용한 건축물의 온실가스 감축 시나리오 분석 - 서울세관건물 그린리모델링 시범사업을 중심으로 - (Analysis of GHG Reduction Scenarios on Building using the LEAP Model - Seoul Main Customs Building Demonstration Project -)

  • 윤영중;김민욱;한준;전의찬
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.341-349
    • /
    • 2016
  • This study is intended to set a greenhouse gas emission scenario based on green remodeling pilot project (Annex building of Seoul Customs Office) using LEAP model, a long-term energy plan analysis model, to calculate the energy saving and greenhouse gas emission till year 2035 as well as to analyze the effect of electric power saving cost. Total 4 scenarios were made, Baseline scenario, assuming the past trend is to be maintained in the future, green remodeling scenario, reflecting actual green remodeling project of Seoul Customs Office, behavior improvement and renewable energy supply, and Total scenario. According to the analysis result, the energy demand in 2035 of Baseline scenario was 6.1% decreased from base year 2013, that of green remodeling scenario was 17.5%, that of behavior improvement and renewable energy supply scenario was 21.1% and that of total scenario was 27.3%. The greenhouse emission of base year 2013 was $878.2tCO_2eq$, and it was expected $826.3tCO_2eq$, approx. 5.9% reduced, in 2035 by Baseline scenario. the cumulative greenhouse gas emission saving of the analyzing period were $-26.5tCO_2eq$ by green remodeling scenario, $2.8k\;tCO_2eq$ by behavior improvement and renewable energy supply scenario, and $2.0k\;tCO_2eq$ by total scenario. In addition the effect of electricity saving cost through energy saving has been estimated, and it was approx. 634 million won by green remodeling scenario and appro. 726 million won by behavior improvement and renewable energy supply scenario. So it is analyzed that of behavior improvement and renewable energy supply scenario would be approx. 12.7% higher than that of green remodeling scenario.

연료원별 온실가스배출량을 고려한 육상교통수단에서의 Modal Shift 효과 (Prediction of Potential $CO_2$ Reduction through Ground Transportation Modal Shift with Fu7el Type and Scenarios)

  • 김초영;이철규;김용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.521-527
    • /
    • 2011
  • Korea announced GHG reduction goal, 30% reduction compare with 2020 BAU and reduction target for each industry sector is planning. Transportation sector also trying to make effective technical and political counterplan of allocated GHG reduction target such as material lightening, energy efficiency improvement and Modal shift technology and so on. Modal Shift is shifting low energy efficiency vehicle to high energy efficiency vehicle which is economically meaningful under current market conditions. We can get not only energy efficiency improvement but also GHG reduction effect through modal shift. Modal Shift is effectively applying and studied in logistics field in Europe and Japan and one of the Indian companies has been registered CDM project activity involving modal shift from roadways to railways for finished goods. In this study, the scenarios are developed with detail modal shift ratio and fuel type base on state of road and rail use and GHG emission factor for each fuel type from MLTM. This result can be used as basic information to improve policies and promote increasing use of train which is more environment friendly transportation vehicle.

  • PDF

사회적 비용을 고려한 저탄소 전원구성의 시나리오 분석 (Scenario Analysis of Low-Carbon Generation Mix Considering Social Costs)

  • 박종배;조영탁;노재형
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.173-178
    • /
    • 2018
  • This study organizes scenarios on the power supply and demand plans considering the uncertainties and the portion of distributed energy resources. In analysing the scenarios, it estimates total electricity supply cost in the social aspect, natural gas demand and air pollutants emission including carbon dioxide. Also the analysis is performed to estimate the marginal cost of carbon dioxide reduction for the fuel switching from coal to liquified natural gas. In result, the social cost could be decreased by replacing some portion of renewable energy by LNG-based combined heat and power and delaying the construction of large base-load generators such as coal and nuclear plants. The marginal carbon dioxide reduction cost by fuel switching is in plausible range for fuel switching to be an option for carbon dioxide emission reduction when the social cost is considered.