• Title/Summary/Keyword: Energy Recovery Efficiency

Search Result 435, Processing Time 0.04 seconds

Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems (역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계)

  • Ham, Y.B.;Kim, Y.;Noh, J.H.;Shin, S.S.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

Prediction of Performance in heat regenerator with spheres (구형축열체를 이용한 축열기의 성능예측)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerators with spherical particles were numerically analyzed to evaluate performance of ratio of waste heat recovery and temperature efficiency and to suggest optimized conditions of heat regenerator. It is predicted that exhaust gases temperature at regenerator outlet of 3.5$\times$10$^{6}$ kcal/hr heat regenerator is even lower than design condition and ratio of waste heat recovery is 75.8%.

  • PDF

Optimal Design of Solvent Recovery Process with Dividing Wall Column for Film Making Process (분리벽형 증류탑을 적용한 필름공정의 폐용매 회수공정 최적설계)

  • Lee, Seung-Hyun;Zo, Moon-Shin;Lee, Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1209-1214
    • /
    • 2006
  • This paper presents an application of Dividing Wall Column(DWC) to the recovery of the waste solvent from the film making processes. The waste solvent feed contains MEK(Methyl-Ethyl-Ketone), Toluene, Cyclohexanone, and water. The commercial software $HYSYS^{TM}$ was used for rigorous simulation and analysis. Sensitivity analysis for several major design variables were carried out to achieve the optimal design of the process. Distribution of the internal vapor and liquid flows to the prefractionator and main sections is shown to be the most dominant design factor for energy saving efficiency in the DWC process. The simulation results also show that the solvent recovery process using the DWC significantly improves both the energy efficiency and the compactness of the solvent recovery process.

Observation Studies on Field Operation of a Exhausted Heat Recovery System for a 300 kW Class Small Gas Engine Cogeneration System (300 kW급 소형 열병합발전기용 배열회수 시스템의 실증운전 성능분석에 관한 연구)

  • Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Ra, Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.248-257
    • /
    • 2010
  • An exhausted heat recovery system for a small gas engine cogeneration plant was investigated. The system was designed and built in a 300 kW class cogeneration demonstrative system. The basic performance was tested depending on load variation, and installed to a field site as a bottoming heat and power supply system. The exhaust gas heat exchangers (EGHXs) in shell-and-tube type and shell-and-plate type were tested. The entire efficiency of the cogeneration system was estimated between 85 to 90% under the 100% load condition, of which trend appears higher in summer due to the less thermal loss than in winter. Power generation efficiency and thermal efficiency was measured in a range of 31~33% and 54~57%, respectively.

Energy Management of a Grid-connected High Power Energy Recovery Battery Testing System

  • Zhang, Ke;Long, Bo;Yoo, Cheol-Jung;Noh, Hye-Min;Chang, Young-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.839-847
    • /
    • 2016
  • Energy recovery battery testing systems (ERBTS) have been widely used in battery manufactures. All the ERBTS are connected in parallel which forms a special and complicated micro-grid system, which has the shortcomings of low energy recovery efficiency, complex grid-connected control algorithms issues for islanded detection, and complicated power circuit topology issues. To solve those shortcomings, a DC micro-grid system is proposed, the released testing energy has the priority to be reutilized between various testing system within the local grid, Compared to conventional scheme, the proposed system has the merits of a simplified power circuit topology, no needs for synchronous control, and much higher testing efficiency. The testing energy can be cycle-used inside the local micro-grid. The additional energy can be recovered to AC-grid. Numerous experimental comparison results between conventional and proposed scheme are provided to demonstrate the validity and effectiveness of the proposed technique.

Experimental Study on the Optimal Heat Exchanger of Thermoelectric Generation System for Industrial and Automobile Waste Heat Recovery (차량 및 산업설비 폐열회수용 열전발전시스템의 최적 열교환 시스템에 관한 실험적 연구)

  • Chung, Jae-Hoon;Kim, Woo-Chul;Lee, Jin-Ho;Yu, Tae-U.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.460-463
    • /
    • 2008
  • A large part of the overall industrial energy is dissipated as waste heat despite of much development in the utilization of thermal energy. A mean efficiency is reported to be only around 30 to 35%. The existing waste heat recovery technology has reached its limit and consequently, the development of a new technology is necessary. Improving efficiency using thermoelectric technology has recently come into the spotlight because of its unique way to recover thermal energy. In fact, thermoelectric generator directly converts thermal energy into electric energy by a solid state without any moving parts. Futhermore remarkable improvement in the thermoelectric energy conversion efficiency has been achieved. In this study, a thermoelectric generator was made using commercialized thermoelectric modules. With thermoelectric modules attached on a duct surface, hot air was blown into the duct using a hot air blower. On the other side of the module, a water jacket was attached to cool the module. With different air inlet temperatures and water flowrates, the electrical power of the thermoelectric generator was measured.

  • PDF

A Study on a Resorption Beat Pump Using Methanol-Glycerine (메탄올-글리세린을 이용한 재흡수 열펌프의 열역학적 모사 연구)

  • Min, Byong-Hun
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.284-290
    • /
    • 2006
  • The improvement of energy recovery is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Absorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. In this study, resorption heat pump for energy recovery has been investigated using methanol-glycerine. The simulated calculation of theoretical thermal efficiency was performed based on the thermodynamic properties of the working fluid over various operating conditions. The thermal efficiency of higher than 0.4 was obtained by raising industrial waste heat, $70{\sim}80^{\circ}C$, by $40^{\circ}C$ in this system.

A Study on Combustion Characteristics of the Bio-drying SRF in 5 Ton/day Scale Combustion Boiler (5톤/일 규모의 연소보일러에서 Bio-drying 고형연료의 연소특성 연구)

  • Kim, Dong-Ju;Yoon, Young-Sik;Jeong, Bup-Mook;Park, Yeong Su;Seo, Yong-Chil;Lee, Byung-Sun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.600-605
    • /
    • 2018
  • In this study, the combustion characteristics were investigated based on the biodrying solid recovered fuel (SRF) in a 5 Ton/day scale combustion boiler. The composition of the combustion gas containing the biodrying SRF was analyzed, the particulate matter, and its HCl content was determined with the air pollutant process test method. Mass balance, carbon balance, and combustion efficiency were calculated according to the equivalence ratio (ER) method; the energy recovery efficiency of the combustion boiler was also analyzed. The overall combustion efficiency of the biodrying SRF was 97.3 % and the energy recovery efficiency was 80.2%.

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

Effect of Waste Heat Recovery Condensing Boiler with Condensed Water Recirculation Function (응축수 순환이 폐열회수 응축형 보일러 성능에 미치는 영향)

  • Keum, Kuk Bin;Kim, Sooik;Yu, Byeong-Hun;Lee, Chang Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.201-204
    • /
    • 2015
  • Recently, energy excessive consumption and environmental pollution are the social issued. The most efficient way to solve both energy excessive consumption and environmental pollution is existing combustion system improved. This study was part of the assume and commercial used existing waste heat recovery condensing boiler to low emission performance for exhaust gas recirculation(EGR) and thermal efficiency rise by applying the condensed water recirculation(CWR) conducted. The researchers applied the EGR and CWR develop a new concept for the condensed water recirculation waste heat recovery condensing boiler. Waste heat recovery condensing boiler applied to the condensed water recirculation thermal efficiency of the same conditions was increased by about 4.8~5.5% and pollution emission also decreased.

  • PDF