• Title/Summary/Keyword: Energy Recovery Efficiency

Search Result 436, Processing Time 0.027 seconds

High Frequency and High Luminance AC-PDP Sustaining Driver

  • Choi Seong-Wook;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • Plasma display panels (PDPs) have a serious thermal problem, because the luminance efficiency of a conventional PDP is about 1.5 1m/W and it is less than $3\~5\;lm/W$ of a cathode ray tube (CRT). Thus there is a need for improving the luminance efficiency of the PDP. There are several approaches to improve the luminance efficiency of the PDP and we adopted a driving PDP at high frequency range from 400kHz up to over 700kHz. Since a PDP is regarded as an equivalent inherent capacitance, many types of sustaining drivers have been proposed and widely used to recover the energy stored in the PDP. However, these circuits have some drawbacks for driving PDPs at high frequency ranges. In this paper, we investigate the effect of the parasitic components on the PDP itself and on the driver when the reactive energy of the panel is recovered. Various drivers are classified and evaluated based on their suitability for high frequency drivers. Finally, a current-fed driver with a DC input voltage bias is proposed. This driver overcomes the effect of parasitic components in the panel and driver. It fully achieves a ZVS of all full-bridge switches and reduces the transition time of the panel polarity. It is tested to validate the high frequency sustaining driver and the experimental results are presented.

Application of coagulation pretreatment for enhancing the performance of ceramic membrane filtration (세라믹 막여과의 성능향상을 위한 응집 전처리의 적용)

  • Kang, Joon-Seok;Song, Jiyoung;Park, Seogyeong;Jeong, Ahyoung;Lee, Jeong-Jun;Seo, Inseok;Chae, Seonha;Kim, Seongsu;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.501-510
    • /
    • 2017
  • In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc.. Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux $2m^3/m^2{\cdot}day$. But in Flux $5m^3/m^2{\cdot}day$, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux $10m^3/m^2{\cdot}day$, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and $UV_{254}$ showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.

Matrix effect of Ti and Zr-2.5Nb sample for hydrogen analysis by Inert Gas Fusion-Thermal Conductivity Detection(IGF-TCD) Method (불활성기체용해-열전도도검출법에 의한 수소분석시 티타늄 및 지르코늄-2.5니오븀 시료의 매질효과)

  • Park, Soon-Dal;Choi, Ke-Chon;Kim, Jung-Suk;Kim, Jong-Gu;Joe, Kih-Soo;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.261-268
    • /
    • 2003
  • To investigate the matrix effect of sample for hydrogen analysis by inert gas fusion-thermal conductivity detection, calibration factor for the hydrogen analyser of the inert gas fusion-thermal conductivity detection method was measured with hydrogen standard materials in Ti, Zr-2.5Nb and by hydrogen gas dosing method. Also the hydrogen extraction efficiency for the different sample matrix, Ti and Zr-2.5Nb, was evaluated without adding tin flux. The calibration factor of the hydrogen analyser which was calibrated by hydrogen standard material in Zr-2.5Nb and Ti was 2~3% and 14% higher than that by hydrogen gas dosing method, respectively. Based on the results of calibration factor measurement, it could be concluded that the hydrogen extraction efficiency of the Ti matrix sample will be 12% lower than that of the Zr-2.5Nb. And according to the experimental results of hydrogen recovery test by no tin flux, the hydrogen recovery percentage of the Ti and Zr-2.5Nb matrix sample was about 70% but the recovery rate of Ti matrix sample was slightly lower than that of Zr-2.5Nb.

A New DC-DC Full-Bridge Converter with Using Regenerative Transformer (회생변압기를 이용한 새로운 전력회수형 풀브리지 컨버터)

  • Kim, J.H.;Hyun, B.C.;Lee, J.M.;Cho, B.H.;Lee, D.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.395-398
    • /
    • 2005
  • A novel full-bridge converter with a new energy-recovery driver implemented a regenerative transformer is proposed to improve the efficiency for wide input voltage range and load variation. The main switches achieve ZVS independent of the load current condition. During the free wheeling period, conduction loss is minimized by recovering the circulating energy to the source. The principle of operation, design consideration and experimental result, including efficiency, are presented in the case of large variation of the input voltage or load. A proposed 1kW converter prototype is compared with a PS-FB converter.

  • PDF

Multi-level Inverter for the Excitation Control of an SRM (SRM의 여자제어를 위한 멀티레벨 인버터)

  • 이상훈;박성준;안진우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.161-169
    • /
    • 2003
  • The applications of SRM(Switched Reluctance motor) are dramatically increasing due to a simple mechanical structure, a high efficiency and a high speed drive characteristics. Energy recovery in the regenerative region is very important when SRM is used in traction drive. This is to reduce energy loss during mechanical braking and/or to have a high efficiency drive. To control excitation voltage during motoring and regenerating voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation. The proposed method is verified through simulations and experiments.

Multi-level Inverter for the Excitation Control of an SRM (SRM의 여자제어를 위한 멀티레벨 인버터)

  • 이상훈;박성준;안진우
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.161-161
    • /
    • 2003
  • The applications of SRM(Switched Reluctance motor) are dramatically increasing due to a simple mechanical structure, a high efficiency and a high speed drive characteristics. Energy recovery in the regenerative region is very important when SRM is used in traction drive. This is to reduce energy loss during mechanical braking and/or to have a high efficiency drive. To control excitation voltage during motoring and regenerating voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation. The proposed method is verified through simulations and experiments.

A High Efficiency DC-DC Boost Converter with Passive Regenerative Snubber

  • Radika, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.501-507
    • /
    • 2014
  • This paper describes the improvement in converter efficiency by reducing the switching loss and by recovering the snubber stored energy. A capacitive based passive regenerative snubber circuit is modeled for a dc-dc boost converter. The proposed snubber is mainly used to reduce the turn-off loss of the main switch. The energy recovery process and the turn-off loss depends on the size of the snubber capacitance; therefore, the conventional and the proposed converters are designed for high and low input voltage conditions with different sizes of the snubber capacitance. Based on the results obtained, the snubber capacitors are classified as small, normal and large snubbers. The Matlab simulation results obtained are presented.

Experimental Research on an Organic Rankine Cycle Using Engine Exhaust Gas (엔진 배기열 이용 유기랭킨사이클에 대한 실험적 연구)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2012
  • In this study, an organic Rankine cycle(ORC) for gas engine waste heat recovery for industry has been constructed and a performance analysis test has been carried out. Shell & tube style heat exchanger has been equipped on an engine exhaust manifold in order to absorb heat of engine exhaust gas into the working fluid(refrigerant R134a). Under 60 kW of engine power output, about 63 kW of engine exhaust gas heat was discharged and the proportion of heat recovered was 68~73% while 43~46 kW of heat was absorbed into working fluid. Consequently rated power output of ORC was 4.6 kW while the ratio of rated power output to engine exhaust gas heat was 7.3%.

The Analysis on Eco-friendly Technologies Effect Applied to SK Chemicals R&D Center (SK케미칼 연구소에 적용된 친환경 기술 적용 효과 분석 - 에너지 및 수자원 절감 적용 효과를 중심으로 -)

  • Yu, Ji-Yong;Lee, Yoo-Ha;Lee, Young-Ryul;Yang, Jae-Woong;Park, Hyun-Geun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.409-414
    • /
    • 2009
  • The SK Chemical R&D center is an eco-friendly building designed as top score in the GBCC(GREEN BUILDING CERTIFICATE CRITERIA). This building has applied various eco-friendly technologies such as energy /water resource cutdown, improvement of indoor quality and improvement of user convenience, etc through eco-friendly concept from the design phase. In this thesis, an economic efficiency evaluation has been performed on building energy cwater resource cutdown technologies among them and the results are as follows. The building energy has cut down about 40% compared to ordinary buildings and the investment recovery period was shown as about 5 years. The water resource has cut down about 63% compared to ordinary buildings and the investment recovery period was shown as about 10 years.

  • PDF

Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles (자동차 배기폐열 회수용 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.287-293
    • /
    • 2014
  • Internal combustion engines release 30~40% of the energy from fossil fuels into the atmosphere in the form of exhaust gases. By utilizing this waste heat, plenty of energy can be conserved in the auto industry. Thermoelectric generation is one way of transforming the energy from engine's exhaust gases into electricity in a vehicle. The thermoelectric generators located on the exhaust pipe have been developed for vehicle applications. Different experiments with thermoelectric generators have been conducted under various test conditions as following examples: hot gas temperature, hot gas mass flow rate, coolant temperature, and coolant mass flow rate. The experimental results have shown that the generated electrical power increases significantly with the temperature difference between the hot and the cold side of the thermoelectric generator and the gas flow rate of the hot-side heat exchanger. In addition, the gas temperature of the hot-side heat exchanger decreases with the length of the thermoelectric generator, especially at a low gas flow rate.