• Title/Summary/Keyword: Energy Production Facility

Search Result 140, Processing Time 0.034 seconds

Evaluating the Characteristics of Growth and Seedling Quality of Tetradium daniellii (Benn.) T. G. Hartley using Five Different Container Types (용기 종류에 따른 쉬나무 용기묘의 생장 및 묘목품질 특성)

  • Sung, Hwan In;Song, Ki Seon;Kim, Jong Jin;Choi, Kyu Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.374-384
    • /
    • 2022
  • There is an increasing demand for Tetradium daniellii seedlings due to their uses as alternative energy, for ecological restoration, and as a honey plant. This study was conducted to determine the optimum container for superior seedling production of T. daniellii. Experiments were performed using five plastic container types (500, 350, 320, 300, and 250 ml) for forestry facility cultivation. The height and root collar diameter growth of T. daniellii seedlings were significantly high in the 350-ml container. High growth appeared primarily in the container with a larger cavity volume and lower growing density. Root development was most active in full sunlight. The maximum dry matter production was observed in the 350-ml container, which was similar to the results of height and root collar diameter growth. QI, an index showing the quality of a seedling, was maximum at 0.97 in the 350-ml container. In conclusion, the 350-ml container is optimum for superior seedling production of T. daniellii.

A Study on Photon Characteristics Generated from Target of Electron Linear Accelerator for Container Security Inspection using MCNP6 Code (MCNP6 코드를 이용한 컨테이너 보안 검색용 전자 선형가속기 표적에서 발생한 광자 평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.193-201
    • /
    • 2020
  • The purpose of this study is to evaluate the photon characteristics according to the material and thickness of the electrons incidented through a linear accelerator. The computer simulation design is a linear accelerator target consisting of a 2 mm thick tungsten single material and a 1.8 mm and 2.3 mm thick tungsten and copper composite material. In the research method, First, the behavior of primary particles in the target was evaluated by electron fluence and electron energy deposition. Second, photons occurring within the target were evaluated by photon fluence. Finally, the photon angle-energy distribution at a distance of 1 m from the target was evaluated by photon fluence. As a result, first, electrons, which are primary particles, were not released out of the target for electron fluence and energy deposition in the target of a single material and a composite material. Then, electrons were linearly attenuated negatively according to the target thickness. Second, it was found that the composite material target had a higher photon generation than the single material target. This confirmed that the material composition and thickness influences photon production. Finally, photon fluence according to the angular distribution required for shielding analysis was calculated. These results confirmed that the photon generation rate differed depending on the material and thickness of the linear accelerator target. Therefore, this study is necessary for designing and operating a linear accelerator use facility for container security screening that is being introduced in the country. In addition, it is thought that it can be used as basic data for radiation protection.

Field Test on IEC60364-4-44 for the Application in Korean distribution system (IEC60364-4-44의 국내 배전계통 적용을 위한 실증시험)

  • Nam, Kee-Young;Choi, Sang-Bong;Jeong, Seong-Whan;Lee, Jae-Duck;Ryoo, Hee-Suk;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.486-487
    • /
    • 2006
  • The authors have studied on the application of IEC 60364-4-44 to Korean electrical installations of buildings from 2004 sponsored by Korean ministry of commerce, industry and energy and the test field is established in K.E.R.I. (Korea Electrotechnology Research Institute). This paper presents the summary results of establishment of test field and analysis for the application of IEC 60364 in Korea. IEC 60364-4-44 provides rules for the protection against the effects of conducted and radiated disturbances on electrical installations. Especially this standard deals with the protection of low voltage facility against the ground fault in the high voltage side of power distribution system. Many countries define the regulations on the use and production of electrical facilities based on their own power system and technical references which are considered to be suitable for them. The background of circuit of IEC 60364-4-44 is based on the ungrounded system as most of European countries. However, since Korean electric power distribution system is based on multi-grounding system different from European system, it is necessary to evaluate or prove the effect of the IEC 60364-4-44 for introducing and applying it to the domestic grounding system as a Korean standard. This paper presents the establishment of test field to get background data to introduce the IEC 60364-4-44 and to evaluate the standard is applicable to domestic rule for the protection against ground fault through the related test

  • PDF

Changes in growth performance, nutrient digestibility, immune blood profiles, fecal microbial and fecal gas emission of growing pigs in response to zinc aspartic acid chelate

  • Jiao, Yang;Li, Xinran;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.597-604
    • /
    • 2020
  • Objective: This study was conducted to investigate the effect of zinc aspartic acid chelate (Zn-ASP) on growth performance, nutrient digestibility, blood profiles, fecal microbial and fecal gas emission in growing pigs. Methods: A total of 160 crossbred ([Landrace×Yorkshire]×Duroc) growing pigs with an initial body weight (BW) of 25.56±2.22 kg were used in a 6-wk trial. Pigs were randomly allocated into 1 of 4 treatments according to their sex and BW (8 replicates with 2 gilts and 3 barrows per replication pen). Treatments were as follows: i) CON, basal diet, ii) TRT1, CON+0.1% Zn-ASP, iii) TRT2, CON+0.2% Zn-ASP, and iv) TRT3, CON+0.3% Zn-ASP. Pens were assigned in a randomized complete block design to compensate for known position effects in the experimental facility. Results: In the current study, BW, average daily gain, and gain:feed ratio showed significant improvement as dietary Zn-ASP increased (p<0.05) in growing pigs. Apparent total tract digestibility (ATTD) of dry matter was increased linearly (p<0.05) in pigs fed with Zn-ASP diets. A linear effect (p<0.05) was detected for the Zn concentration in blood with the increasing levels of Zn-ASP supplementation. Lactic acid bacteria and coliform bacteria were affected linearly (p<0.05) in pigs fed with Zn-ASP diets. However, no significant differences were observed in the ATTD of nitrogen, energy and Zn. And dietary Zn-ASP supplementation did not affect fecal ammonia, hydrogen sulfide and total mercaptans emissions in growing pigs. Conclusion: In conclusion, dietary supplementation with Zn-ASP of diet exerted beneficial effects on the growth performance, nutrient digestibility, blood profiles and fecal microbes in growing pigs.

A Study on Estimating Regional Water Demand and Water Management Policy (물 수요함수 추정과 지역 물 관리 정책 연구)

  • Lim, Dongsoon
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.1-8
    • /
    • 2018
  • In Korea, water supply capacity and facility investments had been emphasized around the 1980s. The water pricing have gained focuses in water policy since the 1990s. This study analyzes a water demand and estimates the relation of water demand and other socio-economic variable, using econometric models on the city of Busan. Water price and income are two key elements to explain water demand. Modeling approach using translog function provides better results, and water demand responds positively to population and income. Energy and water prices are negative factors in deciding water demand. It is requested that water pricing needs to reflect more production costs. Alternative approaches such as water saving facilities by household and use of digital water information should be emphasized for efficient water management in a local community.

A Study on the Purity Change of Silicon Metal According to the Purity of Silica Stone in Metal Silicon Extraction by Thermit Reaction (테르밋 반응을 이용하여 금속실리콘을 추출할 때 규석 순도에 따라 금속실리콘 순도 변화에 대한 고찰)

  • Kim, Jaehee;Han, Jinho;Shin, Hyunmyung
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.19-25
    • /
    • 2017
  • The ways of producing metal silicon include a carbon reduction method, a plasma reduction method, and a thermite reaction method. The carbon reduction process produces metal silicon by metallurgical refining. The carbon reduction method is produced by adding a raw material mixed with quartz and coke to an electric arc furnace which is for carbon reduction. The cost of high energy costs and environmental protection facilities is an issue when producing metal silicon using electric arc furnaces. For this reason, there is no metal silicon production facility in Korea yet. Therefore, the optimal manufacturing conditions by the carbon reduction method are being studied through the experimental facilities by the companies and research institutes. The present study investigated the change of metal silicon purity according to the purity of silicon when extracting metal silicon using the thermit reaction, which has a relatively lower manufacturing cost than the carbon reduction method.

A Study on the Effect of Group Heating in Rural Villages Using Poplar Wood Chips on Fuel Quality, Cost, and Atmospheric Environment (포플러 목재칩을 이용한 농산촌 마을 집단난방시 연료품질, 비용, 대기환경에 미치는 영향에 관한 연구)

  • An, Byeong-Il;Ko, Kyoung-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.57-69
    • /
    • 2022
  • This study analyzes the fuel conditions and environmental effects of converting heating in rural villages that rely on fossil fuels into wood fuel. In particular, we tried to derive the most important considerations when using wooden chips as fuel in aging agricultural villages where various variables such as weather, facility characteristics, fuel quality, and maintenance capabilities work. Above all, an experiment was conducted by comparing it with oak trees to determine whether Italian poplar, a representative attribute water created to supply fuel wood in Korea, is suitable for heating fuel. Through experiments, 1) Even though the supply of poplar wood chips during 10 hours of operation was 60.74 kg less than that of hardwood chips, the production of hot water was 140 kWh higher. 2) The higher the exhaust gas temperature, the proportional (increase) oxygen concentration and inversely (decrease) PM and CO emissions. 3) Poplar has twice as much ash content as hardwood and three times more fine dust has been detected, but it meets all the standards for wood quality at the Korea Forest Science Institute. 4) Under the condition that there is a difference in water content (7.7%), hardwood cost 1.13 times more wood chips per 1 MWh than poplar, and even if the water content is corrected equally, hardwood cost 1.05 times more per 1 MWh than poplar. 5) In conclusion, it was proved that the fuel possibility, economic possibility, and environmental possibility of poplar wood chips are sufficient.

Stability Analysis of Pipe Rack Module for Underground Complex Plants Construction (복합플랜트 지하 건설을 위한 파이프랙 모듈 공법 안정 해석)

  • Kim, Sewon;Lee, Sangjun;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 2021
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. In order to safely construct a large-scale plant facility in the underground space, it is necessary to increase the utilization of the limited space layout and minimize unnecessary columns. In this study, the plant modularization method(Pipe Rack Module) was reviewed to solve the problems of work constraints, assembly and demolition, process system interconnection, and maintenance that occur when plant facilities are underground. In addition, plant module analysis was performed by applying various load conditions (earthquake load, device load, earth pressure load, etc.) to improve spatial layout usability and secure structure stability. Based on the analysis results under various boundary condition, the implications regarding the minimum installation interval and module arrangement (draft) of basic modules required for the construction of an underground combined plant were derived.

A Fluid Analysis Study on Centrifugal Pump Performance Improvement by Impeller Modification (원심펌프 회전차 Modification시 성능개선에 관한 유동해석 연구)

  • Lee, A-Yeong;Jang, Hyun-Jun;Lee, Jin-Woo;Cho, Won-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Centrifugal pump is a facility that transfers energy to fluid through centrifugal force, which is usually generated by rotating the impeller at high speed, and is a major process facility used in many LNG production bases such as vaporization seawater pump, industrial water and fire extinguishing pump using seawater. to be. Currently, pumps in LNG plant sites are subject to operating conditions that vary depending on the amount of supply desired by the customer for a long period of time. Pumps in particular occupy a large part of the consumption strategy at the plant site, and if the optimum operation condition is not available, it can incur enormous energy loss in long term plant operation. In order to solve this problem, it is necessary to identify the performance deterioration factor through the flow analysis and the result analysis according to the fluctuations of the pump's operating conditions and to determine the optimal operation efficiency. In order to evaluate operation efficiency through experimental techniques, considerable time and cost are incurred, such as on-site operating conditions and manufacturing of experimental equipment. If the performance of the pump is not suitable for the site, and the performance of the pump needs to be reduced, a method of changing the rotation speed or using a special liquid containing high viscosity or solids is used. Especially, in order to prevent disruptions in the operation of LNG production bases, a technology is required to satisfy the required performance conditions by processing the existing impeller of the pump within a short time. Therefore, in this study, the rotation difference of the pump was applied to the ANSYS CFX program by applying the modified 3D modeling shape. In addition, the results obtained from the flow analysis and the curve fitting toolbox of the MATLAB program were analyzed numerically to verify the outer diameter correction theory.

A Review on Conception of Policy for Production of Imported Tropical and Temperate Fresh Fruits Using Hot Waste Water from Power Plant (발전소 온배수를 활용한 온·열대 신선과일 수입대체 정책 방안)

  • Kim, Yean-Jung;Park, Jiyun;Kim, Bae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.48-53
    • /
    • 2017
  • One of the policies of the Ministry of Agriculture, Forestry and Livestock Food and Livestock aims to export $10 billion worth of products. Although it was not easy to achieve the export goal of $ 6.5 billion in 2016, the policy should be pursued continuously. Accordingly, a facility modernization project and high-tech greenhouse project are being implemented to facilitate exports. Moreover, it is possible to consider substitution of imports in the policy shift. Imports of temperate and tropical fresh fruits totaled 1.2 trillion won in 2016. Accordingly, identification of alternatives to tropical and temperate fresh fruit imports will enable farm income to increase and the fresh fruit industry to grow. The major obstacle to tropical fruit production in Korea is high heating costs. However, Jeju Island apple mango farmers found that using non-taxable kerosene and hot water from power plants could reduce heating costs by 42.5%. Indeed, using hot wastewater can reduce heating costs by more than 40%. To improve competition with imported fruits, farmers can change their heating systems using financial support plans (e.g., 20% government subsidies, 20% loans, 30% subsidies from local governments). The income effect and import substitution effect of fruit tree farmers should be carefully analyzed in the future and the study will be closed to discuss the policy direction.