• Title/Summary/Keyword: Energy Partitioning

Search Result 96, Processing Time 0.028 seconds

Decentralized Frequency Allocation Scheme in Vehicle-mounted Mobile Relay System (차량 탑재형 이동 중계기의 분산 주파수 분할 기법)

  • Shin, Yun-Jae;Lee, Jung-Ryun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.592-600
    • /
    • 2012
  • In this paper, we proposed that decentralized frequency allocation scheme(DFAS) without network entry procedure between relays in mobile relay system. Frequency Indicator(FI) signal which is the reference signal of frequency division of each relay and Energy Detection(ED) region are defined. In addition, the mobile connected to the relay transmits the FI signal to neighbor relays in order to facilitate communication between relays. Finally, by using this scheme, the cell throughput improvement is confirmed.

Partitioning and Diffusion Properties of Hydrogen Gases In Porous Membranes Using the Nonoverlapping Sphere Model (비겹침 구형 모델을 이용한 세공 박막 내 수소 기체의 분산 및 확산 특성)

  • Suh, Soong-Hyuck;Ha, Ki-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.3
    • /
    • pp.119-125
    • /
    • 1998
  • The modified statistical-mechanical theory for dense fluid mixtures of rigid spheres has been applied to rigid sphere fluids in the nonoverlapping pore model. The resulting expressions for the partition coefficient and diffusivity illustrate the influence of steric hindrance on the thermodynamic and transport properties in such systems. The open membrane model without the size-exclusion and shielding effects shows considerable overestimation of the diffusion flux when the effective mean pore radii of the order of $20{\AA}$ or less are involved. Theoretical predictions investigated here were also compared with experimental data for hydrogen gases in inorganic porous membranes and it was observed a qualitative agreement in the low pressure limit.

  • PDF

Performance Enhancement of Parallel Prime Sieving with Hybrid Programming and Pipeline Scheduling (혼합형 병렬처리 및 파이프라이닝을 활용한 소수 연산 알고리즘)

  • Ryu, Seung-yo;Kim, Dongseung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.10
    • /
    • pp.337-342
    • /
    • 2015
  • We develop a new parallelization method for Sieve of Eratosthenes algorithm, which enhances both computation speed and energy efficiency. A pipeline scheduling is included for better load balancing after proper workload partitioning. They run on multicore CPUs with hybrid parallel programming model which uses both message passing and multithreading computation. Experimental results performed on both small scale clusters and a PC with a mobile processor show significant improvement in execution time and energy consumptions.

An Energy-Efficient Periodic Data Collection using Dynamic Cluster Management Method in Wireless Sensor Network (무선 센서 네트워크에서 동적 클러스터 유지 관리 방법을 이용한 에너지 효율적인 주기적 데이터 수집)

  • Yun, SangHun;Cho, Haengrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.206-216
    • /
    • 2010
  • Wireless sensor networks (WSNs) are used to collect various data in environment monitoring applications. A spatial clustering may reduce energy consumption of data collection by partitioning the WSN into a set of spatial clusters with similar sensing data. For each cluster, only a few sensor nodes (samplers) report their sensing data to a base station (BS). The BS may predict the missed data of non-samplers using the spatial correlations between sensor nodes. ASAP is a representative data collection algorithm using the spatial clustering. It periodically reconstructs the entire network into new clusters to accommodate to the change of spatial correlations, which results in high message overhead. In this paper, we propose a new data collection algorithm, name EPDC (Energy-efficient Periodic Data Collection). Unlike ASAP, EPDC identifies a specific cluster consisting of many dissimilar sensor nodes. Then it reconstructs only the cluster into subclusters each of which includes strongly correlated sensor nodes. EPDC also tries to reduce the message overhead by incorporating a judicious probabilistic model transfer method. We evaluate the performance of EPDC and ASAP using a simulation model. The experiment results show that the performance improvement of EPDC is up to 84% compared to ASAP.

Voltage-Frequency-Island Aware Energy Optimization Methodology for Network-on-Chip Design (전압-주파수-구역을 고려한 에너지 최적화 네트워크-온-칩 설계 방법론)

  • Kim, Woo-Joong;Kwon, Soon-Tae;Shin, Dong-Kun;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.22-30
    • /
    • 2009
  • Due to high levels of integration and complexity, the Network-on-Chip (NoC) approach has emerged as a new design paradigm to overcome on-chip communication issues and data bandwidth limits in conventional SoC(System-on-Chip) design. In particular, exponentially growing of energy consumption caused by high frequency, synchronization and distributing a single global clock signal throughout the chip have become major design bottlenecks. To deal with these issues, a globally asynchronous, locally synchronous (GALS) design combined with low power techniques is considered. Such a design style fits nicely with the concept of voltage-frequency-islands (VFI) which has been recently introduced for achieving fine-grain system-level power management. In this paper, we propose an efficient design methodology that minimizes energy consumption by VFI partitioning on an NoC architecture as well as assigning supply and threshold voltage levels to each VFI. The proposed algorithm which find VFI and appropriate core (or processing element) supply voltage consists of traffic-aware core graph partitioning, communication contention delay-aware tile mapping, power variation-aware core dynamic voltage scaling (DVS), power efficient VFI merging and voltage update on the VFIs Simulation results show that average 10.3% improvement in energy consumption compared to other existing works.

Dynamic of heat production partitioning in rooster by indirect calorimetry

  • Rony Lizana, Riveros;Rosiane, de Sousa Camargos;Marcos, Macari;Matheus, de Paula Reis;Bruno Balbino, Leme;Nilva Kazue, Sakomura
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.75-83
    • /
    • 2023
  • Objective: The objective of this study was to describe a methodological procedure to quantify the heat production (HP) partitioning in basal metabolism or fasting heat production (FHP), heat production due to physical activity (HPA), and the thermic effect of feeding (TEF) in roosters. Methods: Eighteen 54-wk-old Hy Line Brown roosters (2.916±0.15 kg) were allocated in an open-circuit chamber of respirometry for O2 consumption (VO2), CO2 production (VCO2), and physical activity (PA) measurements, under environmental comfort conditions, following the protocol: adaptation (3 d), ad libitum feeding (1 d), and fasting conditions (1 d). The Brouwer equation was used to calculate the HP from VO2 and VCO2. The plateau-FHP (parameter L) was estimated through the broken line model: HP = U×(R-t)×I+L; I = 1 if t<R or I = 0 if t>R; Where the broken-point (R) was assigned as the time (t) that defined the difference between a short and long fasting period, I is conditional, and U is the decreasing rate after the feed was withdrawn. The HP components description was characterized by three events: ad libitum feeding and short and long fasting periods. Linear regression was adjusted between physical activity (PA) and HP to determine the HPA and to estimate the standardized FHP (st-FHP) as the intercept of PA = 0. Results: The time when plateau-FHP was reached at 11.7 h after withdrawal feed, with a mean value of 386 kJ/kg0.75/d, differing in 32 kJ from st-FHP (354 kJ/kg0.75/d). The slope of HP per unit of PA was 4.52 kJ/mV. The total HP in roosters partitioned into the st-FHP, termal effect of feeding (TEF), and HPA was 56.6%, 25.7%, and 17.7%, respectively. Conclusion: The FHP represents the largest fraction of energy expenditure in roosters, followed by the TEF. Furthermore, the PA increased the variation of HP measurements.

The Probabilistic Production Simulation with Energy Limited Units Using the Mixture of Cumulants Approximation (에너지 제약을 갖는 발전기를 고려한 경우의 Mixture of Cumulants Approximation법에 의한 발전시뮬레이션에 관한 연구)

  • 송길영;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1195-1202
    • /
    • 1991
  • This paper describes a newly developed method of production simulation by using the Mixture of Cumulant Approximation (MOCA). In this method, the load is modelled as random variable (r.v.) which can be interpreted in terms of partitioning the load into various categories. We can consider the load shape of multi-modal characteristics. The number of load category and demarcation points of each load category are calculated automatically by using interpolation and least square method. Each generating unit of a supply system is modelled as r.v. of unit outage capacity according to the number of unit outage subset. Since the computation burden of each subset's moments increases exponentially as units are convolved to the system, we further derive the specific recursive formulae. In simulating the energy limited units, hydro unit simulation is performed using Energy Invariance Property and the simulation of pumped storage unit is modelled as compulsory and economic operations. The proposed MOCA method is applide to the test systems and the results are compared with those of cumulant and Booth Baleriaux method. It is verified that the MOCA method is considerably reliable and stable both pathological and well behaved system.

DEVELOPMENT OF A WALL-TO-FLUID HEAT TRANSFER PACKAGE FOR THE SPACE CODE

  • Choi, Ki-Yong;Yun, Byong-Jo;Park, Hyun-Sik;Kim, Hee-Dong;Kim, Yeon-Sik;Lee, Kwon-Yeong;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1143-1156
    • /
    • 2009
  • The SPACE code that is based on a multi-dimensional two-fluid, three-field model is under development for licensing purposes of pressurized water reactors in Korea. Among the participating research and industrial organizations, KAERI is in charge of developing the physical models and correlation packages for the constitutive equations. This paper introduces a developed wall-to-fluid heat transfer package for the SPACE code. The wall-to-fluid heat transfer package consists of twelve heat transfer subregions. For each sub-region, the models in the existing safety analysis codes and the leading models in literature have been peer reviewed in order to determine the best models which can easily be applicable to the SPACE code. Hence a wall-to-fluid heat transfer region selection map has been developed according to the non-condensable gas quality, void fraction, degree of subcooling, and wall temperature. Furthermore, a partitioning methodology which can take into account the split heat flux to the continuous liquid, entrained droplet, and vapor fields is proposed to comply fully with the three-field formulation of the SPACE code. The developed wall-to-fluid heat transfer package has been pre-tested by varying the independent parameters within the application range of the selected correlations. The smoothness between two adjacent heat transfer regimes has also been investigated. More detailed verification work on the developed wall-to-fluid heat transfer package will be carried out when the coupling of a hydraulic solver with the constitutive equations is brought to completion.

Current Status and Future Prospects of the IAEA Program in the Fields of Nuclear Fuel Cycle and Materials Technologies (핵연료주기 기술개발을 위한 IAEA 프로그램의 추이 분석 및 전망)

  • KIM Kyoung-Pyo;PARK Seong-Won;SEO Chung-Suk;KIM Ho-Dong;SONG Kee-Chan;JEONG Sang-Mun
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.221-228
    • /
    • 2005
  • The objectives of this paper are to present the general features of the current IAEA programs and their future prospects in the fields of the nuclear fuel cycle and the related materials technologies thus responding to a need to achieve a consolidated understanding of the Agency's programs for an effect ive implementation of the respective national R&D projects in Korea. During the development of the Agency's programs for 2005-2007 in the aforementioned fields. it is foreseen that an considerable attention will be attributed to the concepts, models and opportunities for optimizing the fuel cycle, mining the raw materials, re-using the materials and reducing the waste arisings (e.g. through Partitioning and transmutation), all of which, will Include an enhanced consideration for proliferation and security concerns.

  • PDF

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.