• Title/Summary/Keyword: Energy Organization

Search Result 452, Processing Time 0.025 seconds

Effects of Smart Factory Quality Characteristics and Dynamic Capabilities on Business Performance: Mediating Effect of Recognition Response

  • CHO, Ik-Jun;KIM, Jin-Kwon;YANG, Hoe-Chang;AHN, Tony-DongHui
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.12
    • /
    • pp.17-28
    • /
    • 2020
  • Purpose: The purpose of this study is to confirm the strategic direction of the firm regarding the capabilities of the organization and its employees in order to increase the utilization and business performance of employees by that introduce smart factories in the domestic manufacturing industry. Research design, data, and methodology: This study derived a structured research model to confirm the mediating effect of recognition responses between the quality characteristics of smart factories and dynamic capabilities. For the analysis, a total of 143 valid questionnaires were used for 200 companies that introduced smart factories from domestic SME's. Results: Quality Characteristics of Smart Factory and Dynamic Capabilities had a statistically significant effect on Usefulness. Recognition Response had a statistically mediating on the relationship between quality characteristics of smart factory and business performance. Recognition Response had a statistically significant effect on business performance. Conclusions: It suggests that firms introducing smart factory reflect them in their empowerment strategic because the recognition responses of its employees differ according to the quality characteristics and dynamic capabilities of smart factories. It also means that the information derived from the smart factory system is useful and effective to business performance and employees.

Calculation of X-ray spectra characteristics and kerma to personal dose equivalent Hp(10) conversion coefficients: Experimental approach and Monte Carlo modeling

  • Arectout, A.;Zidouh, I.;Sadeq, Y.;Azougagh, M.;Maroufi, B.;Chakir, E.;Boukhal, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.301-309
    • /
    • 2022
  • This work aims to establish some X-ray qualities recommended by the International Standard Organization (ISO) using the half-value layer (HVL) and Hp(10) dosimetry approaches. The HVL values of the following qualities N-60, N-80, N-100, N-150 and N-250 were determined using various attenuation layers. The obtained results were compared to those of reference X-ray beam qualities and a good agreement was found (difference less than 5% for all qualities). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) radiation transport Monte Carlo toolkit was employed to simulate the production of X-ray spectra. The characteristics HVLs, mean energy and the spectral resolution of simulated spectra have been calculated and turned out to be conform to the ISO reference ones (difference less than the limit allowed by ISO). Furthermore, the conversion coefficients from air kerma to personal dose equivalent for simulated and measured spectra were fairly similar (the maximum difference less than 4.2%).

Is It Possible to Achieve IMO Carbon Emission Reduction Targets at the Current Pace of Technological Progress?

  • Choi, Gun-Woo;Yun, Heesung;Hwang, Soo-Jin
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.113-125
    • /
    • 2022
  • Purpose - The primary purpose of this study is to verify whether the target set out by the International Maritime Organization (IMO) for reducing carbon emissions from ships can be achieved by quantitatively analyzing the trends in technological advances of fuel oil consumption in the container shipping market. To achieve this purpose, several scenarios are designed considering various options such as eco-friendly fuels, low-speed operation, and the growth in ship size. Design/methodology - The vessel size and speed used in prior studies are utilized to estimate the fuel oil consumption of container ships and the pace of technological progress and Energy Efficiency Design Index (EEDI) regulations are added. A database of 5,260 container ships, as of 2019, is used for multiple linear regression and quantile regression analyses. Findings - The fuel oil consumption of vessels is predominantly affected by their speed, followed by their size, and the annual technological progress is estimated to be 0.57%. As the quantile increases, the influence of ship size and pace of technological progress increases, while the influence of speed and coefficient of EEDI variables decreases. Originality/value - The conservative estimation of carbon emission drawn by a quantitative analysis of the technological progress concerning the fuel efficiency of container vessels shows that it is not possible to achieve IMO targets. Therefore, innovative efforts beyond the current scope of technological progress are required.

Impact of molybdenum cross sections on FHR analysis

  • Ramey, Kyle M.;Margulis, Marat;Read, Nathaniel;Shwageraus, Eugene;Petrovic, Bojan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.817-825
    • /
    • 2022
  • A recent benchmarking effort, under the auspices of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA), has been made to evaluate the current state of modeling and simulation tools available to model fluoride salt-cooled high temperature reactors (FHRs). The FHR benchmarking effort considered in this work consists of several cases evaluating the neutronic parameters of a 2D prismatic FHR fuel assembly model using the participants' choice of simulation tools. Benchmark participants blindly submitted results for comparison with overall good agreement, except for some which significantly differed on cases utilizing a molybdenum-bearing control rod. Participants utilizing more recently updated explicit isotopic cross sections had consistent results, whereas those using elemental molybdenum cross sections observed reactivity differences on the order of thousands of pcm relative to their peers. Through a series of supporting tests, the authors attribute the differences as being nuclear data driven from using older legacy elemental molybdenum cross sections. Quantitative analysis is conducted on the control rod to identify spectral, reaction rate, and cross section phenomena responsible for the observed differences. Results confirm the observed differences are attributable to the use of elemental cross sections which overestimate the reaction rates in strong resonance channels.

A Survey of The Status of R&D Using ICT and Artificial Intelligence in Agriculture (농업에서의 ICT와 인공지능을 활용한 연구 개발 현황 조사)

  • Seonho Khang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 2023
  • Agriculture plays an industrial and economic role, as well as an environmental and ecological conservation role, group harmony and the inheritance of traditional culture. However, no matter how advanced the industry is, the basic food necessary for human life can only be produced through the photosynthesis of plants with natural resources such as the sun, water, and air. The Food and Agriculture Organization of the United Nations (FAO) predicts that the world's population will increase by another 2 billion people by 2050, and it faces a myriad of complex and diverse factors to consider, including climate change, food security concerns, and global ecosystems and political factors. In particular, in order to solve problems such as increasing productivity and production of agricultural products, improving quality, and saving energy, it is difficult to solve them with traditional farming methods. Recently, with the wind of the 4th industrial revolution, ICT convergence technology and artificial intelligence have been rapidly developing in many fields, but it is also true that the application of new technologies is somewhat delayed due to the unique characteristics of agriculture. However, in recent years, as ICT and artificial intelligence utilization technologies have been developed and applied by many researchers, a revolution is also taking place in agriculture. This paper summarizes the current state of research so far in four categories of agriculture, namely crop cultivation environment management, soil management, pest management, and irrigation management, and smart farm research data that has recently been actively developed around the world.

  • PDF

STRIDE-based threat modeling and DREAD evaluation for the distributed control system in the oil refinery

  • Kyoung Ho Kim;Kyounggon Kim;Huy Kang Kim
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.991-1003
    • /
    • 2022
  • Industrial control systems (ICSs) used to be operated in closed networks, that is, separated physically from the Internet and corporate networks, and independent protocols were used for each manufacturer. Thus, their operation was relatively safe from cyberattacks. However, with advances in recent technologies, such as big data and internet of things, companies have been trying to use data generated from the ICS environment to improve production yield and minimize process downtime. Thus, ICSs are being connected to the internet or corporate networks. These changes have increased the frequency of attacks on ICSs. Despite this increased cybersecurity risk, research on ICS security remains insufficient. In this paper, we analyze threats in detail using STRIDE threat analysis modeling and DREAD evaluation for distributed control systems, a type of ICSs, based on our work experience as cybersecurity specialists at a refinery. Furthermore, we verify the validity of threats identified using STRIDE through case studies of major ICS cybersecurity incidents: Stuxnet, BlackEnergy 3, and Triton. Finally, we present countermeasures and strategies to improve risk assessment of identified threats.

Influence on EDM Surface with the Copper and Graphite Electrode According to the Discharge Energy (방전에너지에 따라 동전극과 흑연전극이 방전가공면에 미치는 영향)

  • Choi, Jae-Yong;Jeon, Eon-Chan;Jeong, Jae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.53-59
    • /
    • 1997
  • This study has been performed to inmvestigate MRR(metal removal rate), REW(relative electrode wear), surface roughness, heat transumutation layer and microhardness distribution in cross-section of the machined surface with various pulse-on duration and peak pulse current, using the copper and graphite electrode on the heat treated STD11 which is extensively used for metallic molding steel with the EDM. The results obtained are as follows; a) There exists critical pulse-on duration(If Ip equals 5A, .tau. on is 50 .mu. s) which shows the the maximum MRR in accordance with peak oulse current and the MRR decreases when the pulse-on duration exceeds the critical pulse-on during because of the abnormal electric discharge. b) Safe discharge is needed to make maximum of MRR and the metalic organization must be complicated for discharge induction. c) Graphite has much more benefits than copper electrode when rapid machining is done without electrode wear. d) The most external surface has the highest microhardness because of car- burizing from heat analysis of the dielectric fluid and the lower layar of the white covered layer has lower microhar dness than base matal because of softening.

  • PDF

A Study on the Comprehensive Impact of the 2023 IMO GHG Strategy on International Shipping (2023 IMO 온실가스 전략이 국제해운에 미치는 포괄적 영향에 대한 고찰)

  • Jung-Yoon Lee;Dae-Jung Hwang;Mingyu Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.397-405
    • /
    • 2023
  • As interest in greenhouse gas reduction has increased in all sectors, the discussion of the International Maritime Organization (IMO) to regulate pollution by ships is attracting attention in international shipping. At the 80th IMO MEPC held in July 2023, the 「2023 IMO Strategy for the Reduction of Green House Gases from Ships (MEPC. 377(80))」 was adopted, which included the net-zero target around 2050, and a firm intention to the decarbonization of the international shipping sector showed. In particular, energy, fuel and technology targets for zero or near-zero greenhouse gas emissions by 2030 were added as new targets, and total greenhouse gas emission checkpoints for 2030 and 2040 were added as an indicator for achieving the 2050 target. The IMO's goal setting for 2030, which is about seven years away, will impose a lot of technical, economic, and political burden despite the decarbonization technology of international shipping, which has grown to a significant level in a short period of time. Accordingly, this paper presents the comprehensive impact of the 2023 IMO GHG Strategy on international shipping.

The ICRP and Its System of Radiological Protection (국제방사선방호위원회와 방사선방호체계)

  • Kun-Woo Cho
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • International Commission on Radiological Protection (ICRP) is an independent international organization that advances the science of radiological protection for the public benefit, particularly by providing recommendations and guidance on all aspects of protection against ionizing radiation. The ICRP is a community of more than 380 globally-recognized experts in radiological protection science, policy, and practice from more than 50 countries. As of January 2024, the ICRP is comprised of a Main Commission, the Scientific Secretariat, four Standing Committees, and 30 Task Groups under the four committees. The ICRP has released well over one hundred publications on all aspects of radiological protection. Most address a particular area within radiological protection, but a handful of the publications, the so-called fundamental recommendations, describe the overall system of radiological protection. The system for radiological protection is based on the current understanding of the science of radiation exposure and its effects along with value judgements. The ICRP offers recommendations to regulatory and advisory agencies and provides advice to management and professional staff with responsibilities for radiological protection. Legislation in most countries adheres closely to ICRP recommendations. The International Atomic Energy Agency's (IAEA) International Basic Safety Standards are based heavily on ICRP recommendations. ICRP recommendations form the core of radiological protection standards, legislation, programs, and practice worldwide.

Review on Regulatory and Technical Standards of Radiation Protection for Lens of the Eye (수정체 방사선 방호에 관한 규제기준 및 기술기준 검토)

  • Si Young Kim;Seok-Ju Hwang;Jae Seong Kim;Jung-Kwon Son
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • The International Commission on Radiological Protection (ICRP) lowered the annual equivalent dose limit of lens of the eye for radiation workers from 150 to 20 mSv in April 2011. This trend of lowering the equivalent dose limit for radiation workers has been observed worldwide, including international organizations such as the International Atomic Energy Agency (IAEA), International Organization for Standardization (ISO) and the European Commission (EC). In 2016, the Nuclear Safety and Security Commission of South Korea published research results that included a proposal for lowering the equivalent dose limit of lens of the eye for radiation workers in line with the ICRP recommendation. However, as of now, South Korea's Nuclear Safety Act and related regulations still specify an annual equivalent dose limit of lens of the eye as 150 mSv for radiation workers. The IAEA and ISO have issued guidelines regarding radiation protection for lens of the eye and recommended a dose level for the lens of the eye at 5 or 6 mSv per year for periodic monitoring of the equivalent dose for the lens of the eye.