• Title/Summary/Keyword: Energy Management Control Algorithm

Search Result 134, Processing Time 0.024 seconds

A Study on Control and Monitoring System for Building Energy Management System

  • Oh, Jin-Seok;Bae, Soo-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • Building energy saving is one of the most important issues in these days. Control algorithm for energy saving should be designed properly to reduce power consumption in building. Recently, building energy system consists of hybrid energy system coupling with RE (Renewable Energy) source. In this paper, an optimum control algorithm for building energy saving is applied to BEMS (Building Energy Management System) by using an outdoor air temperature prediction strategy. BEMS coupling with renewable energy can control HVAC (Heating, Ventilating and Air-Conditioning) system effectively. In order to verify the effectiveness of building energy saving, BEMS was tested for several months at a laboratorial chamber with an air conditioner, fan and heater. To this end BEMS embedded control algorithm has been tested successfully.

A Study on the Energy Management Control of Hybrid Excavator (하이브리드 굴삭기의 에너지 관리 제어에 관한 연구)

  • Yoo, Bong Soo;Hwang, Cheol Min;Joh, Joongseon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1304-1312
    • /
    • 2012
  • According to the successful development of hybrid vehicle, hybridization of construction equipments like excavator, wheel loader, and backhoe etc., is gaining increasing attention. However, hybridization of excavator and commercial vehicle is very different. Therefore a specialized energy management control algorithm for excavator should be developed. In this paper, hybridization of excavators is investigated and a new energy management control algorithm is proposed. Four control parameters, i.e., lower baseline, upper baseline, idling generation speed, and idling generation torque, are newly introduced and a new operating principle using those four control parameters is proposed. The use of Genetic Algorithm for the optimization of the four control parameters from the view point of minimization of fuel consumption for standard excavating operation is suggested. In order to verify the proposed algorithm, dedicated simulation program of hybrid excavator was developed. The proposed algorithm is applied to a specific hydraulic excavator and 20.7% improvement of fuel consumption is achieved.

Power Consumption Management Algorithm Based on OpenADR (OpenADR 기반의 전력사용량 관리 알고리즘)

  • Kim, Jeong-Uk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.991-994
    • /
    • 2016
  • This paper presents a load management method based on OpenADR of smart grid. Previous demand side algorithm is restricted on reducing peak power. But, in this paper we suggest a method of performing the energy-saving control according to the power price utilizing building automatic control system installed on the customer side in the case of hourly differential pricing signal is transmitted to the open automated demand response system. And, we showed the integrated demand management software for 3 buildings.

Development of Industrial Load Control Algorithm for Factory Energy Management System (F-EMS) under Real Time Pricing Environment (실시간요금제하에서 산업용 수용가의 부하제어알고리즘 개발)

  • Jeon, Jeong-Pyo;Jang, Sung-Il;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1627-1636
    • /
    • 2014
  • In real-time electricity price environment, the energy management system can provide the significant advantage to the residential, commercial and industrial customers since it can reduce the electricity charge by controlling the load operation effectively in response to time-varying price. However, the earlier studies for load management mainly focus on the residential and commercial customers except for the industrial customers because most of load operations in industrial sector are intimately related with production schedule. So, it is possible that the inappropriate control of loads in industrial sector causes huge economic loss. In this paper, therefore, we propose load control algorithm for factory energy management system(F-EMS) to achieve not only minimizing the electricity charges but also maintaining production efficiency by considering characteristics of load operation and production schedule. Considering characteristics of load operation and production schedule, the proposed load control algorithm can reflect the various characteristics of specific industrial customer and control their loads within the range that the production efficiency is maintained. Simulation results show that the proposed load control algorithm for F-EMS leads to significant reduction in the electricity charges and peak power in industrial sector.

Building Energy Management System Coupling with Renewable Energy System

  • Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.34 no.9
    • /
    • pp.705-709
    • /
    • 2010
  • Buildings nowadays are increasingly expected to need higher and more economic performance requirements. Energy consumption in buildings accounts for over 30% of total energy use. The Building Energy Management System (BEMS) and renewable energy (RE) technologies are considered as a potential measure to improve energy efficiency and reduce use of grid-power. It is, however, a challenge to utilise the intermittent energy supply of RE in building energy systems. This paper presents an experimental study on a RE-embedded BEMS. A control algorithm for the RE-embedded BEMS was designed to maximise the utilisation of RE and eventually to reduce electrical utility bill. The proposed system is tested at a laboratorial chamber with an air conditioner, fan and heater. The contribution of RE in building energy system is discussed to this end.

Energy Demand Management Algoritm for Buildings and Application Procedure (건물군 에너지 수요관리 알고리즘 및 적용 절차)

  • Kim, Jeong-Uk
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • This paper presents an advanced energy demand management for buildings. It is important to aggregate a various demand side resource which is controllable on demand response environment. Previous demand side algorithm for building is mostly restricted on single building. In this paper, we suggest energy demand management algorithm for many buildings. And, this paper shows the procedure to apply suggested demand management algorithm.

Ant-based Routing in Wireless Sensor Networks (개미 시스템을 이용한 무선 센서 네트워크 라우팅 알고리즘 개발)

  • Ok, Chang-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.2
    • /
    • pp.53-69
    • /
    • 2010
  • This paper proposes an ant-based routing algorithm, Ant System-Routing in wireless Senor Networks(AS-RSN), for wireless sensor networks. Using a transition rule in Ant System, sensors can spread data traffic over the whole network to achieve energy balance, and consequently, maximize the lifetime of sensor networks. The transition rule advances one of the original Ant System by re-defining link cost which is a metric devised to consider energy-sufficiency as well as energy-efficiency. This metric gives rise to the design of the AS-RSN algorithm devised to balance the data traffic of sensor networks in a decentralized manner and consequently prolong the lifetime of the networks. Therefore, AS-RSN is scalable in the number of sensors and also robust to the variations in the dynamics of event generation. We demonstrate the effectiveness of the proposed algorithm by comparing three existing routing algorithms: Direct Communication Approach, Minimum Transmission Energy, and Self-Organized Routing and find that energy balance should be considered to extend lifetime of sensor network and increase robustness of sensor network for diverse event generation patterns.

Neuro-Fuzzy control of converging vehicles for automated transportation systems (뉴로퍼지를 이용한 자율운송시스템의 차량합류제어)

  • Ryu, Se-Hui;Park, Jang-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.907-913
    • /
    • 1999
  • For an automated transportation system like PRT(Personal Rapid Transit) system or IVHS, an efficient vehicle-merging algorithm is required for smooth operation of the network. For management of merging, collision avoidance between vehicles, ride comfort, and the effect on traffic should be considered. This paper proposes an unmanned vehicle-merging algorithm that consists of two procedures. First, a longitudinal control algorithm is designed to keep a safe headway between vehicles in a single lane. Secondly, 'vacant slot and ghost vehicle' concept is introduced and a decision algorithm is designed to determine the sequence of vehicles entering a converging section considering energy consumption, ride comfort, and total traffic flow. The sequencing algorithm is based on fuzzy rules and the membership functions are determined first by an intuitive method and then trained by a learning method using a neural network. The vehicle-merging algorithm is shown to be effective through simulations based on a PRT model.

  • PDF

Energy efficiency strategy for a general real-time wireless sensor platform

  • Chen, ZhiCong
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.617-641
    • /
    • 2014
  • The energy constraint is still a common issue for the practical application of wireless sensors, since they are usually powered by batteries which limit their lifetime. In this paper, a practical compound energy efficiency strategy is proposed and realized in the implementation of a real time wireless sensor platform. The platform is intended for wireless structural monitoring applications and consists of three parts, wireless sensing unit, base station and data acquisition and configuration software running in a computer within the Matlab environment. The high energy efficiency of the wireless sensor platform is achieved by a proposed adaptive radio transmission power control algorithm, and some straightforward methods, including adopting low power ICs and high efficient power management circuits, low duty cycle radio polling and switching off radio between two adjacent data packets' transmission. The adaptive transmission power control algorithm is based on the statistical average of the path loss estimations using a moving average filter. The algorithm is implemented in the wireless node and relies on the received signal strength feedback piggybacked in the ACK packet from the base station node to estimate the path loss. Therefore, it does not need any control packet overheads. Several experiments are carried out to investigate the link quality of radio channels, validate and evaluate the proposed adaptive transmission power control algorithm, including static and dynamic experiments.

Cluster-Based Node Management Algorithm for Energy Consumption Monitoring in Wireless Mobile Ad Hoc Networks (무선 모바일 애드혹 네트워크상에서 에너지 소모 감시를 위한 클러스터 기반의 노드 관리 알고리즘)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.309-315
    • /
    • 2016
  • The node mobility in the wireless mobile network environment increases the energy consumption. This paper proposes a CNMA (cluster-based node management algorithm) to reduce the energy consumption caused by node mobility, and to prolong the life cycle for cluster member nodes. The proposed CNMA traces the mobility for nodes between cluster header and member, and it analyses the energy capacity as monitoring periodically their relationship. So, it makes a division and merges by analysing the state transition for nodes. This paper is to reduce the energy consumption due to the node mobility. The simulation results show that the proposed CNMA can efficiently control the energy consumption caused by mobility, and it can improve the energy cycle.