• Title/Summary/Keyword: Energy Integration

Search Result 751, Processing Time 0.021 seconds

Impacts of Wind Power Integration on Generation Dispatch in Power Systems

  • Lyu, Jae-Kun;Heo, Jae-Haeng;Kim, Mun-Kyeom;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.453-463
    • /
    • 2013
  • The probabilistic nature of renewable energy, especially wind energy, increases the needs for new forms of planning and operating with electrical power. This paper presents a novel approach for determining the short-term generation schedule for optimal operations of wind energy-integrated power systems. The proposed probabilistic security-constrained optimal power flow (P-SCOPF) considers dispatch, network, and security constraints in pre- and post-contingency states. The method considers two sources of uncertainty: power demand and wind speed. The power demand is assumed to follow a normal distribution, while the correlated wind speed is modeled by the Weibull distribution. A Monte Carlo simulation is used to choose input variables of power demand and wind speed from their probability distribution functions. Then, P-SCOPF can be applied to the input variables. This approach was tested on a modified IEEE 30-bus system with two wind farms. The results show that the proposed approach provides information on power system economics, security, and environmental parameters to enable better decision-making by system operators.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

Lateral Stability Control of Electric Vehicle Based On Disturbance Accommodating Kalman Filter using the Integration of Single Antenna GPS Receiver and Yaw Rate Sensor

  • Nguyen, Binh-Minh;Wang, Yafei;Fujimoto, Hiroshi;Hori, Yoichi
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.899-910
    • /
    • 2013
  • This paper presents a novel lateral stability control system for electric vehicle based on sideslip angle estimation through Kalman filter using the integration of a single antenna GPS receiver and yaw rate sensor. Using multi-rate measurements including yaw rate and course angle, time-varying parameters disappear from the measurement equation of the proposed Kalman filter. Accurate sideslip angle estimation is achieved by treating the combination of model uncertainties and external disturbances as extended states. Active front steering and direct yaw moment are integrated to manipulate sideslip angle and yaw rate of the vehicle. Instead of decoupling control design method, a new control scheme, "two-input two-output controller", is proposed. The extended states are utilized for disturbance rejection that improves the robustness of lateral stability control system. The effectiveness of the proposed methods is verified by computer simulations and experiments.

A Preliminary Study on Piezo-aeroelastic Energy Harvesting Using a Nonlinear Trailing-Edge Flap

  • Bae, Jae-Sung;Inman, Daniel J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.407-417
    • /
    • 2015
  • Recently, piezo-aeroelastic energy harvesting has received greater attention. In the present study, a piezo-aeroelastic energy harvester using a nonlinear trailing-edge flap is proposed, and its nonlinear aeroelastic behaviors are investigated. The energy harvester is modeled using a piezo-aeroelastic model of a two-dimensional typical section airfoil with a trailing-edge flap (TEF). A piezo-aeroelastic analysis is carried out using RL and time-integration methods, and the results are verified with the experimental data. The linearizing method using a describing function is used for the frequency domain analysis of the nonlinear piezo-aeroelastic system. From the linear and nonlinear piezo-aeroelastic analysis, the limit cycle oscillation (LCO) characteristics of the proposed energy harvester with the nonlinear TEF are investigated in both the frequency and time domains. Finally, the authors discuss the air speed range for effective piezo-aeroelastic energy harvesting.

An Efficient Artificial Intelligence Hybrid Approach for Energy Management in Intelligent Buildings

  • Wahid, Fazli;Ismail, Lokman Hakim;Ghazali, Rozaida;Aamir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5904-5927
    • /
    • 2019
  • Many artificial intelligence (AI) techniques have been embedded into various engineering technologies to assist them in achieving different goals. The integration of modern technologies with energy consumption management system and occupant's comfort inside buildings results in the introduction of intelligent building concept. The major aim of this integration is to manage the energy consumption effectively and keeping the occupant satisfied with the internal environment of the building. The last few couple of years have seen many applications of AI techniques for optimizing the energy consumption with maximizing the user comfort in smart buildings but still there is much room for improvement in this area. In this paper, a hybrid of two AI algorithms called firefly algorithm (FA) and genetic algorithm (GA) has been used for user comfort maximization with minimum energy consumption inside smart building. A complete user friendly system with data from various sensors, user, processes, power control system and different actuators is developed in this work for reducing power consumption and increase the user comfort. The inputs of optimization algorithms are illumination, temperature and air quality sensors' data and the user set parameters whereas the outputs of the optimization algorithms are optimized parameters. These optimized parameters are the inputs of different fuzzy controllers which change the status of different actuators according to user satisfaction.

STEPSTONE: An Intelligent Integration Architecture for Personal Tele-Health

  • Helal, Sumi;Bose, Raja;Chen, Chao;Smith, Andy;De Deugd, Scott;Cook, Diane
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.269-281
    • /
    • 2011
  • STEPSTONE is a joint industry-university project to create open source technology that would enable the scalable, "friction-free" integration of device-based healthcare solutions into enterprise systems using a Service Oriented Architecture (SOA). Specifically, STEPSTONE defines a first proposal to a Service Oriented Device Architecture (SODA) framework, and provides for initial reference implementations. STEPSTONE also intends to encourage a broad community effort to further develop the framework and its implementations. In this paper, we present SODA, along with two implementation proposals of SODA's device integration. We demonstrate the ease by which SODA was used to develop an end-to-end personal healthcare monitoring system. We also demonstrate the ease by which the STEPSTONE system was extended by other participants - Washington State University - to include additional devices and end user interfaces. We show clearly how SODA and therefore SODA devices make integration almost automatic, replicable, and scalable. This allows telehealth system developers to focus their energy and attention on the system functionality and other important issues, such as usability, privacy, persuasion and outcome assessment studies.

The Distribution of Work-Life Integration against COVID-19 and its Implications: Focusing on Remote Work in Switzerland

  • CHOI, Choongik;LEE, Kwang-Hoon
    • Journal of Distribution Science
    • /
    • v.21 no.1
    • /
    • pp.95-105
    • /
    • 2023
  • Purpose: This study aims to explore the distribution of work-life integration against COVID-19 and its Implications by analyzing remote work in Switzerland. Research design, data and methodology: The study performed literature review and descriptive analyses using various data such as perception surveys, statistics, and related documents. Results: The infectious disease was a turning point for many people in Switzerland by changing where and how people want to live. Since the COVID-19 crisis demonstrated that disease could be spread by proximity, negative perception about urban areas expanded, and rural areas are increasingly preferred due to fresh and clean air and a more ecological lifestyle. In addition, increased remote work, a change brought about by COVID-19, has subsequently led to changes in household habits and needs. Distance from work is no longer an important factor when someone chooses where to live. A trend is now emerging where households wanting to improve the quality of life leave the city center and move to the suburbs. Conclusions: Paradoxically, such trend accelerated by the COVID-19 crisis has an unintendedly positive impact on the distribution of work-life integration across society while providing more flexibility in terms of place and time management and lowering the burden on roads and infrastructure.

A Study on the Photon Energy Spectrums of Backlight for the Analysis of the Photoelectric Characteristics of a-Si:H TFT (비정질 실리콘 박막 트랜지스터의 광특성 분석을 위한 백라이트의 광자 에너지 스펙트럼에 대한 연구)

  • Jeong, Kyung-Seo;Kwon, Sang-Jik;Cho, Eou-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1058-1062
    • /
    • 2009
  • For the investigation of the mechanism of photoelectric characteristics of a hydrogenated amorphous silicon thin film transistor(a-Si:H TFT), spectral characteristics of various backlights were analyzed in terms of the photon energy at each wavelength. Photon energy spectral characteristics were obtained through the multiplication of each photon energy and spectral intensities of backlights at each wavelength and the total photon energies were obtained by the integration of the photon energy spectrums. From the comparison of the experimental photo leakage current and the calculated photon energy, it was possible to conclude that the absorption of illuminated backlight to a-Si:H layer and the generation of electrons and holes are mainly carried out at the wavelength less than 500 nm as described in previous reports.

Dynamic Analysis on the Energy Regenerative Brake of Hydraulic Driven Systems (유압 구동계 에너지 제생 브레이크의 동특성 해석)

  • 이재구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.137-146
    • /
    • 2000
  • The hydraulic energy regnerative brake systems is introduced in this work. An accumulator stores kinetic energy during braking action, and the stored energy is used in a following acceleration action. The dynamic model of the brake system is derived for computer simulation study, and the Runge-Kutta numerical integration method is applied to the simulation work. Since the model contains several unknown parameters, these were determined by data which had been proceeded. Through a series of computer simulation , dynamic performance of the energy regenerative brake system is compared with that of a conventional system in which a conventional brake circuit is used. A series of test is carried out in the laboratory. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action.

  • PDF

Highly Efficient, Flexible Thin Film Nanogenerator

  • Lee, Geon-Jae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.10.1-10.1
    • /
    • 2011
  • Energy harvesting technologies converting external sources (such as thermal energy, vibration and mechanical energy from the nature sources of wind, waves or animal movements) into electrical energy is recently a highly demanding issue in the materials science community for making sustainable green environments. In particular, fabrication of usable nanogenerator attract the attention of many researchers because it can scavenge even the biomechanical energy inside the human body (such as heart beat, blood flow, muscle stretching, or eye blinking) by converging harvesting technology with implantable bio-devices. Herein, we describe procedure suitable for generating and printing a lead-free microstructured $BaTiO_3$ thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible $BaTiO_3$ thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of $BaTiO_3$ thin film nanogenerator and the integration of bio-eco-compatible ferroelectric materials may enable innovative opportunities for artificial skin and energy harvesting system.

  • PDF