• Title/Summary/Keyword: Energy Estimating

Search Result 749, Processing Time 0.034 seconds

Measuring the matter energy density and Hubble parameter from Large Scale Structure

  • Lee, Seokcheon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.57.1-57.1
    • /
    • 2013
  • We investigate the method to measure both the present value of the matter energy density contrast and the Hubble parameter directly from the measurement of the linear growth rate which is obtained from the large scale structure of the Universe. From this method, one can obtain the value of the nuisance cosmological parameter $\Omo$ (the present value of the matter energy density contrast) within 3% error if the growth rate measurement can be reached $z >3.5$. One can also investigate the evolution of the Hubble parameter without any prior on the value of $H_0$ (the current value of the Hubble parameter). Especially, estimating the Hubble parameter are insensitive to the errors on the measurement of the normalized growth rate $f \sigma_8$. However, this method requires the high $z$ ($z >3.5$) measurement of the growth rate in order to get the less than 5% errors on the measurements of $H(z)$ at $z \leq 1.2$ with the redshift bin $\Delta z = 0.2$. Thus, this will be suitable for the next generation large scale structure galaxy surveys like WFMOS and LSST.

  • PDF

Performance Evaluation of the Wall-Type BIPV System Based on the Energy Consumption Unit - A Study for University Lecture Building - (에너지 소비 원단위를 기초로 한 벽면부착형 BIPV 시스템의 성능평가에 관한 연구 - 대학교 강의동 건축물을 대상으로 -)

  • Lee, Kang-Guk;Seo, Won-Duck;Hong, Won-Hwa
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.6
    • /
    • pp.25-32
    • /
    • 2011
  • The building integrated photovoltaic(BIPV) system has a double advantage that it reduces costs for exterior materials and PV panels. It allows the construction of a low-energy building without the need for the additional installation space. At the construction planning stage, however, it requires sufficient evaluation on the efficiency and performance. This study was performed to promote the distribution of photovoltaic power generation system by estimating the potential photovoltaic power generation capacity of the BIPV system installed on the university lecture building and by evaluating the characteristics and performances of window, spandrel and combined attachment types via the simulation of generation capacity per unit area.

  • PDF

Solar Radiation Estimation Using Cloud Cover and Percentage of Possible Sunshine (운량과 일조율에 의한 일사예측)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.67.2-67.2
    • /
    • 2011
  • It is necessary to estimate empirical constants in order to predict the monthly mean daily global radiation on a horizontal surface in the developing areas for alternative energy. Therefore many different equations have proposed to evaluate them for certain areas. In this work a new correlation has been made to predict the solar radiation for any areas over Korea by calculating the regression models taking into account latitude, percentage of possible sunshine, and cloud cover. From the results, the single linear equation proposed by using percentage of possible sunshine method shows reliable results for estimating the global radiation with average annual deviation of -3.1 to +0.6 % from measured values.

  • PDF

Comparative studies of density functionals in modelling hydrogen bonding energetics of acrylamide dimers

  • Lin, Yi-De;Wang, Yi-Siang;Chao, Sheng D.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.369-376
    • /
    • 2017
  • Intermolecular interaction energies and conformer geometries of the hydrogen bonded acrylamide dimers have been studied by using the second-order Møller-Plesset (MP2) perturbation theory and the density functional theory (DFT) with 17 density functionals. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) have been used to study the basis set effects. The DFT calculated interaction energies are compared to the reference energy data calculated by the MP2 method and the coupled cluster method at the complete basis set (CCSD(T)/CBS) limit in order to determine the relative performance of the studied density functionals. Overall, dispersion-energy-corrected density functionals outperform uncorrected ones. The ${\omega}B97XD$ density functional is particularly effective in terms of both accuracy and computational cost in estimating the reference energy values using small basis sets and is highly recommended for similar calculations for larger systems.

Standard Weather Data of Seoul for Energy Simulation (에너지 시뮬레이션을 위한 서울의 표준 외기 온도 및 습도 데이터)

  • 김성실;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.897-906
    • /
    • 2002
  • Standard temperature and absolute humidity weather correlations of Seoul for dynamic energy simulation have been developed regressing the measured data compiled by the Korea Meteorological Adminstration during a 10-year period from 1991 to 2000. The mathematical equations can generate the daily and yearly variations of outdoor weather data with consistency unlike the measured data which may show abnormal behavior, Considering that each hour of the day follows a certain yearly pattern, the correlations are developed for each hour. The derived 24 simple mathematical equations can be used for estimating outdoor temperature and humidity conditions for any arbitrary time of the year.

Electret-based microgenerators under sinusoidal excitations: an analytical modeling

  • Nguyen, Cuong C.;Ranasinghe, Damith C.;Al-Sarawi, Said F.
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.335-347
    • /
    • 2018
  • The fast-growing number of mobile and wearable applications has driven several innovations in small-scale electret-based energy harvesting due to the compatibility with standard microfabrication processes and the ability to generate electrical energy from ambient vibrations. However, the current modeling methods used to design these small scale transducers or microgenerators are applicable only for constant-speed rotations and small sinusoidal translations, while in practice, large amplitude sinusoidal vibrations can happen. Therefore, in this paper, we formulate an analytical model for electret-based microgenerators under general sinusoidal excitations. The proposed model is validated using finite element modeling combined with numerical simulation approaches presented in the literature. The new model demonstrates a good agreement in estimating both the output voltage and power of the microgenerator. This new model provides useful insights into the microgenerator operating mechanism and design trade-offs, and therefore, can be utilized in the design and performance optimization of these small structures.

A time-reliability correlation for estimating the diagnosis error probability of a nuclear power plant with up-to-date Human-Machine interfaces

  • Wondea Jung;Yochan Kim;Jinkyun Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4087-4096
    • /
    • 2024
  • Despite being developed more than four decades ago based on expert judgment, the THERP time-reliability correlation (TRC) remains widely employed for calculating diagnosis human error probabilities in human reliability analysis for nuclear power plant risk assessment. However, with numerous advancements in nuclear plant equipment and operations, as well as the emergence of plants featuring advanced interfaces, there's a growing need to validate the THERP TRC. The objective of this study is to establish a TRC for the diagnosis human error probability in a modern reference nuclear power plant equipped with up-to-date human-machine interfaces and compare it with the median of the THERP TRC. To achieve this goal, we devised a method to gather event diagnosis times from a simulator and developed procedures to derive diagnosis TRCs using this data. Our findings indicate that while the median of the THERP TRC offers a conservative diagnosis human error probability for up to 25 min, it becomes overly optimistic beyond this threshold.

Non-energy Use and $CO_2$ Emissions: NEAT Results for Korea

  • Park, Hi-chun
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.34-46
    • /
    • 2002
  • Carbon accounting is a key issue in the discussions on global warming/CO$_2$mitigation. This paper applies both the IPCC Approach and the NEAT (Non-Energy use Emission Accounting Tables) model, a bottom-up approach, to estimate the potential CO$_2$ emissions (carbon storage) originating from the non-energy use as to assess the actual CO$_2$ emissions (carbon release) from the use of fossil fuels in Korea. The current Korean carbon accounting seems to overestimate the potential CO$_2$ emissions and with it to underestimate the actual CO$_2$ emissions. The estimation shows that the potential CO$_2$ emissions calculated according to the IPCC Approach are lower than those calculated using the NEAT model. This is because the IPCC default storage fraction for naphtha seems to be low for the Korean petrochemical production structure, on the one hand and because the IPCC Approach does not consider the trade with short life petrochemical products, on the other hand. This paper shows that a bottom-up approach like the NEAT model can contribute to overcome some of limitations of the IPCC guidelines, especially by considering the international trade with short life petrochemical products and by estimating the storage fractions of fossil fuels used as feedstocks for the country in consideration. This paper emphasizes the importance of accurate energy statistics for carbon accounting.

A Study on the Estimating Direct Normal Insolation Using Horizontal Global Insolation for Solar Thermal Generation System Installation in Korea (법선면 직달일사량 예측기법을 이용한 한반도에서의 태양열발전단지 건설을 위한 최적지 선정에 관한 연구)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.77-87
    • /
    • 2012
  • Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. For the validation, estimated direct normal Insolation is compared with observed direct normal Insolation at 16 sites over the Korean peninsular from January 1982 to December 2010. Estimated direct normal Insolation shows reliable results with average deviation of -5.4 to +5.9% from the measured values and the yearly averaged direct normal Insolation of Korean peninsula was turned out to be 2.93 $kW/m^2/day$.

Comparative Evaluation of Indoor Temperature in Spring according to Sitting Orientation of Tower-Type Apartments (탑상형 아파트의 배치방향별 봄철 실내온도 비교평가)

  • Kim, Jun Hyun;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.175-185
    • /
    • 2011
  • It is usual for energy consumption in accordance with facing and sitting direction of tower-type apartments to be calculated by the official statistics or computer simulation. Previous studies for energy consumption appear to be very limited due to the dependence on flat type of apartment. Acknowledging these constraints, an empirical study for a tower type apartment was conducted to demonstrate how a on-site indoor temperature measurement in spring can be used to assist in estimating the total energy consumption in terms of facing and sitting orientation specific settings. The results indicate that maximum temperature difference in spring was identified as $1.16^{\circ}C$ between south and eastern direction. It is known that raising $1^{\circ}C$ indoor temperature require 7% more energy consumption than normal. The $1.16^{\circ}C$ difference means that sitting direction of tower type apartment is a crucial explanatory variable as unit of analysis for energy consumption. It was demonstrated that the indoor temperature could be used effectively as an indicator to estimate energy consumption among various sitting direction of tower type apartments. It is anticipated that this research output could be used as a valuable reference to support more scientific and objective decision-making for facing and sitting orientation of tower type apartments.