• Title/Summary/Keyword: Energy Equation

Search Result 2,857, Processing Time 0.052 seconds

Hot Gas Analysis of Circuit Breakers By Combining Partial Characteristic Method with Net Emission Coefficient

  • Park, Sang-Hun;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.115-121
    • /
    • 2003
  • This paper proposes a radiation model, which considers radiation transport as an important component in hot gas analysis. This radiation model is derived from combining the method of partial characteristics (MPC) with net emission coefficient (NEC), and it covers the drawbacks of existing models. Subsequently, using this proposed model, the arc-flow interaction in an arcing chamber can be efficiently computed. The arc is represented as an energy source term composed of ohmic heating and the radiation transport in the energy conservation equation. Ohmic heating term was computed by the electric field analysis within the conducting plasma region. Radiation transport was calculated by the proposed radiation model. Also, in this paper, radiation models were introduced and applied to the gas circuit breaker (GCB) model. Through simulation results, the efficiency of the proposed model was confirmed.

Energy Distribution Function for Electrons in SF6+Ar Mixtures Gas used by MCS-BEQ Algorithm (SF6+Ar혼합기체의 MCS-BEq에 의한 전자분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.28-32
    • /
    • 2002
  • Energy distribution function for electrons in $SF_6+Ar$ mixtures gas used by MCS-BEq algorithm bas been analysed over the E/N range 30-300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6+Ar$ mixtures were measured by time-of-flight(TOF) method. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values.

Effect of Boundary Condition Changes on the Sound Field (경계 조건이 음장에 미치는 영향)

  • 조성호;김양한;최성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1317-1322
    • /
    • 2001
  • What changes in the eigen values and eigen functions are produced if the boundary surface S is no longer rigid but has a specific acoustic admittance which may vary from point to point on S. In this paper, changes in eigen values and eigen functions are derived by using Kirchhoff-Helmholtz integral equation. And acoustic potential energy, which is representative measure describing the physical quantity in cavity, is defined. Acoustic potential energy can be divided into primary one and secondary one. Primary one is the acoustic potential energy through unchanged eigen functions, and secondary one is through changed eigen functions. Using these two term, we can find the eigenvalue problem, which gives the control performance when the boundary condition is changed.

  • PDF

Analysis of Rate Equation for Spherodization of Cold Rolled Lamellar Pearlite Structure (가공된 층상조직의 구상화 속도의 해석)

  • Wey, Myeong Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.2
    • /
    • pp.1-8
    • /
    • 1991
  • The spheroidization of cold rolled lamellar pearlite in annealing at the temperatures between 600 and $700^{\circ}C$ has been studied by quantitative micrography. It was foud that the spheroidization proceeded as two stageh. The first stage was the stage of relieving the stored energy by cold work, the second was the stage of reducing the interface energy between ferrite and cementite. The spheroidization rate combining the spheroidization rate of each stages is described by the following equation : $$d(1/S)/dt=k_3{\cdot}D/_{(1/s)}\{{\sigma}V/_{(1/s)}+k_4{\cdot}{\exp}(-bt)\}$$ Where, S is the total area of the interface between ferrite and cementite per unit volume, D is the diffusion coefficient, ${\sigma}$ is the boundary energy, V is the volume fraction of the cementite, and $k_3$, $k_4$, b are constants.

  • PDF

Thermodynamic Properties of the Modified Yukawa Potential

  • Okorie, U.S.;Ibekwe, E.E.;Ikot, A.N.;Onyeaju, M.C.;Chukwuocha, E.O.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1211-1218
    • /
    • 2018
  • Within the framework of the modified factorization method, we solve the $Schr{\ddot{o}}dinger$ equation with the modified Yukawa potential. The energy spectrum is obtained using the Pekeris approximation scheme for the centrifugal term. The thermodynamic properties, including the vibrational partition function, vibrational mean energy, vibrational mean free energy, vibrational specific heat capacity and vibrational entropy, are calculated. As a special case, we compare our result with that work of Dong [Int. J. Quant. Chem. 107, 366 (2007)] and find good agreement.

Determination of shear stiffness for headed-stud shear connectors using energy balance approach

  • Ye, Huawen;Huang, Ruosen;Tang, Shiqing;Zhou, Yu;Liu, Jilin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.477-487
    • /
    • 2022
  • The shear stiffness of headed-stud shear connectors has no unified definition due to the nonlinear characteristics of its load-slip relationship. A unified framework was firstly adopted to develop a general expression of shear load-slip equation for headed-stud shear connectors varying in a large parameter range based on both force and energy balance. The pre- and post-yield shear stiffness were then determined through bilinear idealization of proposed shear load-slip equation. An updated and carefully selected push-out test database of 157 stud shear connectors, conducting on studs 13~30mm in diameter and on concretes 30~180 MPa in cubic compressive strength, was used for model regression and sensitivity analysis of shear stiffness. An empirical calculation model was also established for the stud shear stiffness. Compared with the previous models through statistical analysis, the proposed model demonstrates a better performance to predict the shear load-slip response and stiffness of the stud shear connectors.

Numerical Calculation of λ-Mode of the Diffusion Equation (수치해법을 이용한 중성자 확산방정식의λ-Mode 계산)

  • Noh, T.W.;Oh, S.K.;Kim, S.Y.;Kim, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.310-316
    • /
    • 1987
  • A successive iteration method to calculate the λ-modes of the diffusion equation was developed. The 2-group, 3-dimensional computer code MOGEN was developed to implement this method, The accuracy of the method was demonstrated using 2-dimensional bare homogeneous rectangular reactor. The numerical solution shows good agreement with the analytic solution in terms of eigenvalue and eigenfunction As for the standard CANDU-600 reactor, the 2-dimensional modes were generated and these represent the conventional mode characteristics well. Finally, application of theλ-mode in reactor engineering problems is described briefly.

  • PDF

Piezoelectric Energy Harvesting from Bridge Vibrations under Railway Loads (철도하중에 의한 교량 진동을 이용한 압전 에너지 수확)

  • Kwon, Soon-Duck;Lee, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.287-293
    • /
    • 2011
  • This paper investigates the applicability of a piezoelectric cantilever for energy supply of wireless sensor node used in structural health monitoring of bridges. By combining the constitutive equation of piezoelectric material and the dynamic equation of cantilever structure, the coupled governing equation for cantilever equipped piezoelectric patches has been addressed in matrix form. Forced excitation tests were carried out to validate the numerical model and to investigate the power output characteristics of the energy harvester. From the numerical simulation based on the measured bridge accelerations under KTX, Saemaul, Mugunghwa trains, the peak powers generated from the device were found to be 28.5 mW, 0.65 mW, 0.51 mW respectively. It is revealed from the results that bridge vibrations caused by moving loads is not a practical source for energy harvesting because of its low acceleration level, low frequency and short duration.

Kirchhoff Prestack Depth Migration for the Complex Structure Using One-Way Wave Equation (일방향 파동방정식을 이용한 복잡한 구조의 키리히호프 중합전 심도구조보정)

  • Ko, Seung-Won;Yang, Seung-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2002
  • As a single arrival traveltime, maximum energy arrival traveltime has been known as the most proper operator for Kirchhoff migration. In case of the model having the simple structure, both the first arrival traveltime and the maximum energy arrival traveltime can be used as the correct operators for Kirchhoff migration. However for some model having the complex and high velocity contrast structure, the migration using the first arrival traveltime can't give the correct depth section. That is, traveltime to be required in Kirchhoff migration is the maximum energy traveltime, but, needs considerably more calculation time than that of first arrival. In this paper, we propose the method for calculating the traveltime approximated to the maximum energy arrival using one-way wave equation. After defining the WAS(Wrap Around Suppression) factor to be used for calculating the first arrival traveltime using one-way wave equation as the function of lateral grid interval and depth and considering the delay time of source wavelet. we calculate the traveltime approximated to the maximum energy arrival. to verify the validity of this traveltime, we applied this to the migraion for simple structure and complex structure and compared the depth section with that obtained by using the first arrival traveltime.

Kinetic Energy Rate of the Rain Drops Based on the Impact Signal Analysis (충격 신호 분석에 기반한 우적의 운동 에너지율)

  • Moraes, Macia C. da S.;Tenorio, Ricardo S.;Sampaio, Elsa;Barbosa, Humberto A.;dos Santos, Carlos A.C.;Yoon, Hong-Joo;Kwon, Byung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.743-754
    • /
    • 2019
  • The erosive potential of precipitation can be evaluated by the kinetic energy transferred to the soil by the impact of the rain drop. A kinetic energy rate of the rain drops was estimated by the disdrometer classifying impact signals. This equation in the form of power presented an adjustment measure between the rain rate and rainfall quantity of 97% and 95% for continental and maritime rains, respectively. The exponent of the power equation, initially, shows no dependence on the type of rainfall. However, the multiplicative factor presented variation, which can be adjusted according to rainfall events. This equation was validated by the coefficient of determination, the average absolute error and the confidence error. The kinetic energy of precipitation, associated to certain types of soil, will allow the determination of the potential of the erosion caused by the rains.