• Title/Summary/Keyword: Energy Equation

Search Result 2,857, Processing Time 0.035 seconds

Validity of predictive equations for resting energy expenditure in Korean non-obese adults

  • Ndahimana, Didace;Choi, Yeon-Jung;Park, Jung-Hye;Ju, Mun-Jeong;Kim, Eun-Kyung
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.283-290
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Indirect calorimetry is the gold-standard method for the measurement of resting energy expenditure. However, this method is time consuming, expensive, and requires highly trained personnel. To overcome these limitations, various predictive equations have been developed. The objective of this study was to assess the validity of predictive equations for resting energy expenditure (REE) in Korean non-obese adults. SUBJECTS/METHODS: The present study involved 109 participants (54 men and 55 women) aged between 20 and 64 years. The REE was measured by indirect calorimetry. Nineteen REE equations were evaluated for validity, by comparing predicted and measured REE results. Predictive equation accuracy was assessed by determining percent bias, root mean squared prediction error (RMSE), and percentage of accurate predictions. RESULTS: The measured REE was significantly higher in men than in women (P < 0.001), but the difference was not significant after adjusting for body weight (P > 0.05). The equation developed in this study had an accuracy rate of 71%, a bias of 0%, and an RMSE of 155 kcal/day. Among published equations, the $FAO_{weight}$ equation gave the highest accuracy rate (70%), along with a bias of -4.4% and an RMSE of 184 kcal/day. CONCLUSIONS: The newly developed equation provided the best accuracy in predicting REE for Korean non-obese adults. Among the previously published equations, the $FAO_{weight}$ equation showed the highest overall accuracy. Regardless, at an individual level, the equations could lead to inaccuracies in a considerable number of subjects.

Excitonic Energy Transfer of Cryptophyte Phycocyanin 645 Complex in Physiological Temperature by Reduced Hierarchical Equation of Motion

  • Lee, Weon-Gyu;Rhee, Young Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.858-864
    • /
    • 2014
  • Recently, many researches have shown that even photosynthetic light-harvesting pigment-protein complexes can have quantum coherence in their excitonic energy transfer at cryogenic and physiological temperatures. Because the protein supplies such noisy environment around pigments that conventional wisdom expects very short lived quantum coherence, elucidating the mechanism and searching for an applicability of the coherence have become an interesting topic in both experiment and theory. We have previously studied the quantum coherence of a phycocyanin 645 complex in a marine algae harvesting light system, using Poisson mapping bracket equation (PBME). PBME is one of the applicable methods for solving quantum-classical Liouville equation, for following the dynamics of such pigment-protein complexes. However, it may suffer from many defects mostly from mapping quantum degrees of freedom into classical ones. To make improvements against such defects, benchmarking targets with more accurately described dynamics is highly needed. Here, we fall back to reduced hierarchical equation of motion (HEOM), for such a purpose. Even though HEOM is known to applicable only to simplified system that is coupled to a set of harmonic oscillators, it can provide ultimate accuracy within the regime of quantum-classical description, thus providing perfect benchmark targets for certain systems. We compare the evolution of the density matrix of pigment excited states by HEOM against the PBME results at physiological temperature, and observe more sophisticated changes of density matrix elements from HEOM. In PBME, the population of states with intermediate energies display only monotonically increasing behaviors. Most importantly, PBME suffers a serious issue of wrong population in the long time limit, likely generated by the zero-point energy leaking problem. Future prospects for developments are briefly discussed as a concluding remark.

Statistical Evaluation of Sigmoidal and First-Order Kinetic Equations for Simulating Methane Production from Solid Wastes (폐기물로부터 메탄발생량 예측을 위한 Sigmoidal 식과 1차 반응식의 통계학적 평가)

  • Lee, Nam-Hoon;Park, Jin-Kyu;Jeong, Sae-Rom;Kang, Jeong-Hee;Kim, Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.88-96
    • /
    • 2013
  • The objective of this research was to evaluate the suitability of sigmoidal and firstorder kinetic equations for simulating the methane production from solid wastes. The sigmoidal kinetic equations used were modified Gompertz and Logistic equations. Statistical criteria used to evaluate equation performance were analysis of goodness-of-fit (Residual sum of squares, Root mean squared error and Akaike's Information Criterion). Akaike's Information Criterion (AIC) was employed to compare goodness-of-fit of equations with same and different numbers of parameters. RSS and RMSE were decreased for first-order kinetic equation with lag-phase time, compared to the first-order kinetic equation without lag-phase time. However, first-order kinetic equations had relatively higher AIC than the sigmoidal kinetic equations. It seemed that the sigmoidal kinetic equations had better goodness-of-fit than the first-order kinetic equations in order to simulate the methane production.

HIGHER ORDER OPERATOR SPLITTING FOURIER SPECTRAL METHODS FOR THE ALLEN-CAHN EQUATION

  • SHIN, JAEMIN;LEE, HYUN GEUN;LEE, JUNE-YUB
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • The Allen-Cahn equation is solved numerically by operator splitting Fourier spectral methods. The basic idea of the operator splitting method is to decompose the original problem into sub-equations and compose the approximate solution of the original equation using the solutions of the subproblems. The purpose of this paper is to characterize higher order operator splitting schemes and propose several higher order methods. Unlike the first and the second order methods, each of the heat and the free-energy evolution operators has at least one backward evaluation in higher order methods. We investigate the effect of negative time steps on a general form of third order schemes and suggest three third order methods for better stability and accuracy. Two fourth order methods are also presented. The traveling wave solution and a spinodal decomposition problem are used to demonstrate numerical properties and the order of convergence of the proposed methods.

Nutritional Status Associated with Drinking Status in Korean Adults : 2001 Korean National Health and Nutrition Survey

  • Sook Mee, Son;Shin A, Nam-Gung;Se Hee, Han
    • Journal of Community Nutrition
    • /
    • v.6 no.2
    • /
    • pp.61-66
    • /
    • 2004
  • This study was performed to investigate the nutritional status associated with alcohol consumption in Korean adults men and women. The data was derived from the 2001 Korean National Health and Nutrition Survey. The number of subjects included were 6090 (Men: 2789, Women: 3031) aged 20 (equation omitted) < 65y. Men consuming moderate alcohol ((equation omitted) 24 g/day but < 48g/day) had higher intakes of energy and vitamin B groups than the ones consuming less than 24g/day. Heavy drinking men reporting more than 48g alcohol/day were observed as having 3207.2kcal of energy intake (130% of Korean RDA) and significantly elevated levels in most of the nutrients. For women drinkers, when the alcohol consumption was moderate ((equation omitted) 12g/day but 24g/day) or heavy((equation omitted) 36g/day) the energy intake was 2188.9kcal(100% of RDA) or 2627.5kcal (130% of RDA). The other nutrients protein, fat, calcium, iron and vitamin B group were also higher in women with heavy alcohol consumption. Heavy drinking women showed significantly higher weight, BMI and HDL-C. In contrast, heavy drinking men did not show any significant difference in BMI but showed significantly elevated blood pressure, HDL-C and lower serum cholesterol.

Linear Relationships between Thermodynamic Parameters (Part III) Application to Solvolysis Reaction (熱力學函數間의 直線關係 (第3報) Solvolysis反應에의 應用)

  • Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.264-270
    • /
    • 1963
  • The general equation for the substituent effect test, which was derived in the previous paper, has been extended to correlate thermodynamic parameters of solvolysis reaction by modifying the potential energy term to represent the effect of changes in solvent composition. The linear fits of the new equation, $\Delta{\Delta}H^\neq=a'Y+b\Delta{\Delta}S^\neq$, were tested with 35 examples from literature and average correlation coefficient of 0.977 was obtained. Examination of results showed that the equation is generally applicable to solvolysis reaction and helps elucidate some the difficulties experienced with the Grunwald-Winsteln equation. It has been stressed that the linear enthalpy-entropy effect exists only between the external enthalpy and entropy of activation, and therefore strictly it is the linear external enthalpy-entropy effect.

  • PDF

Application of Simplified Daylight Prediction Method for Daylighting Performance Evaluation on Overcast Sky (실내 주광조도 간이 예측식을 활용한 담천공 시의 자연 채광 성능 평가)

  • Yoon, Kap-Chun;Yun, Su-In;Kim, Seong-Sik;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.1-9
    • /
    • 2014
  • Daylight is very useful to control the indoor environment, and can save energy in buildings. So it is necessary to evaluate the daylighting performance of buildings. We proposed a simplified equation that can be used in the early stages of design. And we verified the equation by using the measured illuminance data from the 1/5 scale model. We compared the calculated indoor illuminances and measured illuminance including Daylight Factors of scale model in order to verify the applicability of the simplified equation, and proved the analyzed values are acceptable. When we have a target value of the Daylight Factor, we just have to determine the window area, transmittance of the glazing system, and indoor surface reflectance, then can achieve it with this simplified equation.

Ionization and Diffusion Coefficients in CH4 Gas by Simulation (시뮬레이션에 의한 CH4 기체의 전리 및 확산계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.317-321
    • /
    • 2014
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron Ionization and diffusion Coefficients in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$^{\circ}K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Application of Crystallization Kinetics on Differential Thermal Analysis (열시차 분석에 대한 결정화 Kinetics의 응용)

  • 이선우;심광보;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1162-1170
    • /
    • 1998
  • Applicability of crystallization kinetics on thermal analysis was investigated for PbO-TiO2-B2O3-BaO glass systems together with theoretical background of kinetics and electron microscopic observations on nu-cleation and crystallization. Kissinger equation can be used on DTA under the assumption that the nucleus density is fixed during DTA runs. Crystallization mechanism affected on the activation energy Ek obtained from powder samples which is used for domination of surface crystallization. Avrami parameter n that was obtained from Ozawa equation represented closely the crystallization mechanisms observed by an electron microscope. The modified Kissinger equation takes into account crystallization mechanism thereby pro-ducing the true activation energy of crystallization.

  • PDF