• Title/Summary/Keyword: Energy Elasticity

Search Result 281, Processing Time 0.023 seconds

A Study on the Hand Values of Hanji Paper Yarn Fabric Treated with Persimmon Juice (감즙 처리된 한지사 소재의 Hand Value에 관한 연구)

  • Choi, Kyeong-Eun;Rhie, Jeon-Sook;Jung, Woo-Young
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.12 no.4
    • /
    • pp.197-206
    • /
    • 2010
  • The purpose of this study is to dye hanji/cotton fabrics using persimmon juice and to investigate the change in the hand fabrics. Using the Kawabata Evaluation System, we have examined the changes in the physical properties, primary hand value and total hand value. The dynamic characteristics of hanji/cotton fabrics have been explored by tensile, shear, bending, compression, surface properties, thickness and weight. As a result, it can be seen that the linearity of load-extension and tensile resilience are increased with the increase of the concentration and dyeing times of persimmon juice and tensile energy is decreased in the same condition. These behaviors are shown in the compression properties. Although the mechanism of persimmon juice dyeing has been widely discussed, it means that the fabrics dyed with persimmon juice become stiffened and the elasticity is increased with the introduction of persimmon on the fabrics studied. Bending rigidity and hysteresis of the bending moment are increased with the increase of the concentration and dyeing times of persimmon juice. Also, Geometrical roughness, expressed in SMD is increased with increasing the concentration and dyeing times of persimmon juice, compared with as-received. It indicates that these results are due to the geometric structure of hanji yarn and the introduction of persimmon juice on the fabrics studied. The fullness and softness with the soft feeing are increased a little due to the tannin component of persimmon juice introduced on the fiber surface.

  • PDF

A Development of Analytical Strategies for Elastic Bifurcation Buckling of the Spatial Structures (공간구조물의 탄성 분기좌굴해석을 위한 수치해석 이론 개발)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.563-574
    • /
    • 2009
  • This paper briefly describes the fundamental strategies--path-tracing, pin-pointing, and path-switching--in the computational elastic bifurcation theory of geometrically non-linear single-load-parameter conservative elastic spatial structures. The stability points in the non-linear elasticity may be classified into limit points and bifurcation points. For the limit points, the path tracing scheme that successively computes the regular equilibrium points on the equilibrium path, and the pinpointing scheme that precisely locates the singular equilibrium points were sufficient for the computational stability analysis. For the bifurcation points, however, a specific procedure for path-switching was also necessary to detect the branching paths to be traced in the post-buckling region. After the introduction, a general theory of elastic stability based on the energy concept was given. Then path tracing, an indirect method of detecting multiple bifurcation points, and path switching strategies were described. Next, some numerical examples of bifurcation analysis were carried out for a trussed stardome, and a pin-supported plane circular arch was described. Finally, concluding remarks were given.

Rheological Properties of Dough Added with Black Rice Flour (흑미가루를 첨가한 밀가루 반죽의 물리적 특성)

  • Jung, Dong-Sik;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.38-43
    • /
    • 2003
  • The rheological properties of wheat flour and black rice flour dough were investigated in dough added with 0, 10, 20, and 30% of black rice flour (BRF). Increase in BRF concentration resulted in: decreases in protein and gluten contents, whereas ash content increased; decreases in water absorption, stability, development time, elasticity, and valorimeter value of the dough, whereas increase in weakness of the dough, as revealed through farinogram; low initial pasting temperature and temperature at peak viscosity, and decreases in viscosity at peak point and at $94^{\circ}C$, as revealed through amylogram; decreases in extensibility, resistance to extension, and energy, whereas increase in R/E ratio, as revealed through extensogram.

Effects of Processing Temperature and Relative Humidities on the Sausage Cooking Time and Prediction Models of Cooking Time (공정온도와 상대습도가 소시지 쿠킹시간에 미치는 영향 및 쿠킹시간 예측모델)

  • Hur, Sang-Sun;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.325-331
    • /
    • 1990
  • The most important factors in the cooking process which is a main process in the sausage manufacture are cooking temperature and relative humidity. In order to design energy efficient processes in cooking, accurate data for the process parameters are necessary. Therefore, texture profiles were analysed and weight losses were measured at different process conditions of the forementioned factors and at different sizes of sausage, The prediction model for the sausage cooking time was then developed by the SPSS computer program The models were developed as a function of cooking temperature, relative humidity and the diameter of sausage by analyszing the scattergram. Then the model obtained could predict the values within 2.5% error. The higher temperature and relative humidity are the less changes of weight during sausage cooking. As the results of measuring physical properties, the values of hardness and cohesiveness at different temperatures and humidities were so much changed, while the values of elasticity and chewiness had little differences.

  • PDF

The Effects of Sa-Am Spleen-tonifying Acupuncture on Radial Pulse in Healthy Human Subjects (비정격(脾正格) 자침이 정상 성인 맥파(脈波) 변화에 미치는 영향)

  • Yoon, Kwang Sik;Lee, Hyun
    • Journal of Acupuncture Research
    • /
    • v.30 no.4
    • /
    • pp.1-14
    • /
    • 2013
  • Objectives : The purpose of this study is to investigate the effects of Sa-Am spleen-tonifying acupuncture on radial pulse in healthy human subjects. Methods : Forty healthy human subjects participated in this study, divided into acupuncture group and control group. Radial pulse was measured by 3 dimensional pulse imaging system(DMP-3000) before, right after, 30 minutes after and 60 minutes after acupuncture in the acupuncture group. The subjects in the control group didn't received acupuncture but took a rest and then the radial pulse was measured at the same time points as the acupuncture group. The parameters were analyzed by gender, measuring location, and measuring time point. However the time related parameters exceptionally were analyzed without distinction of measuring location. Results : 1. T, variance of period, T2/T, T4/T, (T-T4)/T, T4/(T-T4), and W significantly changed after acupuncture. 2. Pressure, amplitude of H1, amplitude of H2, Amplitude of H4 and pulse energy significantly changed after acupuncture. 3. Pulse area, systolic pulse area and diastolic pulse area significantly changed after acupuncture. 4. Elasticity, AIx and AIx/HR significantly changed after acupuncture. Conclusions : The effect of Sa-Am spleen-tonifying acupuncture in healthy human may be observed on time, amplitude, pulse area and augmentation index. Further studies on the effects of Sa-Am acupuncture using radial pulse are needed.

A Study on the Applicability of CNT/Aluminum Nanocomposites to Automotive Parts (CNT강화 알루미늄 나노복합재의 자동차용 부품 적용성 연구)

  • Min, Byung Ho;Nam, Dong Hoon;Park, Hoon Mo;Lee, Kyung Moon;Lee, Jong Kook
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2015
  • Various characteristics(thermal expansion, microstructure, etc.) and mechanical properties of CNT-aluminum nano composites manufactured by volume production system were evaluated. Also, formability and durability were evaluated for potential applications in automotive parts, via compared with high-elasticity material (A390) and the current commercial product. As a result, this composite has excellent mechanical properties and formability, therefore, to verity its potential for application as light and high strength materials in automobile part.

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

Bending and free vibration analysis of laminated piezoelectric composite plates

  • Zhang, Pengchong;Qi, Chengzhi;Fang, Hongyuan;Sun, Xu
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.747-769
    • /
    • 2020
  • This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What's more, the effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated.

A Study on Estimating Regional Water Demand and Water Management Policy (물 수요함수 추정과 지역 물 관리 정책 연구)

  • Lim, Dongsoon
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.1-8
    • /
    • 2018
  • In Korea, water supply capacity and facility investments had been emphasized around the 1980s. The water pricing have gained focuses in water policy since the 1990s. This study analyzes a water demand and estimates the relation of water demand and other socio-economic variable, using econometric models on the city of Busan. Water price and income are two key elements to explain water demand. Modeling approach using translog function provides better results, and water demand responds positively to population and income. Energy and water prices are negative factors in deciding water demand. It is requested that water pricing needs to reflect more production costs. Alternative approaches such as water saving facilities by household and use of digital water information should be emphasized for efficient water management in a local community.

Cloth simulation using a particle system on triangular mesh (삼각 메쉬 파티클 시스템을 이용한 직물 시뮬레이션)

  • Noh, Jae-Hee;Jung, Moon-Ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.3
    • /
    • pp.31-39
    • /
    • 2010
  • The particle system based on quad mesh has been posed to model cloth. But we need to develop cloth models on triangular meshes because they are widely used. Cloth modeling on triangular mesh is often done in the style of finite element method, which assumes that material is continuous. To preserve the advantages of particle system, e.g. model simplicity and the ease of implementation, even on triangular mesh, this paper proposes a particle system on triangular mesh. The motion of cloth is modeled so that vertices interact with each other via the edges on the triangular mesh. The interactions of vertices are assumed to exist between every adjacent vertex and between every other vertex. The deformation energy due to interaction is constructed based on the theory of elasticity. The contribution of the paper is to implement the advantages of particle system on triangular mesh.