• Title/Summary/Keyword: Energy Effective

Search Result 5,602, Processing Time 0.042 seconds

Calculation Formula for Effective Photon Energy in kV X-ray Beam of Mammography (유방촬영의 kV X-선 빔에서 유효광자에너지에 대한 계산식)

  • Young-On Park;Sang-Hun Lee;Jong-Eon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.507-514
    • /
    • 2023
  • The purpose of this study is to find a formula that can easily calculate the effective photon energy in the X-ray beam of mammography. The tube voltage measured for each set tube voltage was obtained using the X2 MAM Sensor. The mass attenuation coefficient for aluminum of the aluminum filter was obtained from the half value layer measurement from each measured tube voltage X-ray beam. The mass attenuation coefficient of aluminum obtained from each measured tube voltage X-ray beam was corresponded to the mass attenuation coefficient of aluminum for each photon energy obtained from NIST. The photon energy corresponding to the matching mass attenuation coefficient was determined as the effective photon energy. The formula for calculating the determined effective photon energy was obtained by polynomial matching of the effective photon energy for each tube voltage in the Origin pro 2019b statistical program as y = 28.98968-1.91738x + 0.07786x2-0.000946717x3. Here, x is the measuring tube voltage and y is the effective photon energy. The calculation formula of the effective photon energy of the mammography X-ray beam obtained in this study is considered to be very useful in obtaining the interaction coefficient between the X-ray beam and a certain substance in clinical practice.

Energy Saving Effect and Economy Feasibility of Office Building with regard to Geometries and Orientations

  • Koh, Jae-Yoon;Zhai, John
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.15-24
    • /
    • 2009
  • The energy usage and the economical feasibility of the typical two story office building in the three urban locations of South Korea are evaluated as the eight orientations. The smallest energy consume is shown at the true south. The ranges of the low energy consume are $-3l5^{\circ}{\sim}0^{\circ}\;and\;-135^{\circ}{\sim}-180^{\circ}$. There are obvious advantages of passive solar designs such as using a fully glazed facade at the true south in the building. The General Low voltage plan is the effective way for the office building when does not required the high voltage electricity. The energy cost of KEPCO is compared to that of XCEL ENERGY. The portion of the customer charge of XCEL ENERGY is about 10% but it is about 50% of the total tariff of KEPCO. The effective way to save the energy cost is by reducing the operating energy of XCEL ENERGY plane but the most effective way is reduce the contracting energy of KEPCO plane.

Influence of the Effective Thermal Thansport Length on the Heat Transfer Characteristics of a Liquid-Metal Heat Pipe for High-temperature Solar Thermal Devices (유효열이송거리가 고온 태양열기기용 액체금속 히트파이프의 열전달 특성에 미치는 영향)

  • Park, Cheol-Min;Boo, Joon-Hong;Kim, Jin-Soo;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.220-225
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature solar thermal application was manufactured and tested for transient and steady-state operations. Two layers of stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. The effective heat transport length, the thermal load, and the operating temperature were varied as thermal transport conditions of the heat pipe. The thermal load was supplied by an electric furnace up to 1kW and the cooling was performed by forced convection of air The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total effective thermal conductivity was as low as 43,500 W/m K for heat flux of 176.4 kW/$m^2$ and of operating temperature of 1000 K.

  • PDF

Numerical and analytical investigation of cyclic behavior of D-Shape yielding damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari;Sasan Kiasat;Kaveh Cheraghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.411-420
    • /
    • 2024
  • The purpose of this research was to investigate the cyclic behavior of the D-shaped dampers (DSD). Similarly, at first, the numerical model was calibrated using the experimental sample. Then, parametric studies were conducted in order to investigate the effect of the radius and thickness of the damper on energy dissipation, effective and elastic stiffness, ultimate strength, and equivalent viscous damping ratio (EVDR). An analytical equation for the elastic stiffness of the DSD was also proposed, which showed good agreement with experimental results. Additionally, approximate equations were introduced to calculate the elastic and effective stiffness, ultimate strength, and energy dissipation. These equations were presented according to the curve fitting technique and based on numerical results. The results indicated that reducing the radius and increasing the thickness led to increased energy dissipation, effective stiffness, and ultimate strength of the damper. On the other hand, increasing the radius and thickness resulted in an increase in EVDR. Moreover, the ratio of effective stiffness to elastic stiffness also played a crucial role in increasing the EVDR. The thickness and radius of the damper were evaluated as the most effective dimensions for reducing energy dissipation and EVDR.

Effective Hamiltonian Study on the Valence States of NH and $NH^+$

  • Jong Keun Park;Hosung Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.34-41
    • /
    • 1990
  • The second order ab initio effective valence shell Hamiltonian is calculated for the valence state potential energy curves of NH and $NH^+$. From the potential energy curves various spectroscopic constants of valence states are determined. The results are in good agreement with experiments and configuration interaction calculations. They show the composite picture of potential energy curves and also indicate that the second order effective Hamiltonian theory is adequate for describing various valence states of a molecule and its ions simultaneously.

Calculation of the Free Energy from the Average of the Modified Effective cceptance Ratio for the Two-Center-Lennard-Jones Liquid

  • 홍성도
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.815-818
    • /
    • 1999
  • The method of calculating the excess Helmholtz free energy from the averaged effective acceptance ratio for the Lennard-Jones fluid and the inverse twelve fluid has been slightly modified and applied to the two-center-Lennard-Jones liquid. The excess Helmholtz free energy is calculated directly from the average of the modified effective acceptance ratio through a single Metropolis Monte Carlo simulation. Therefore this method does not need any reference system. The results of the present method were satisfactory compared with those of the perturbation theories and the overlap ratio method.

A Numerical Analysis of Hydraulic Hammer Compaction (유압식 햄머다짐의 수치해석적 연구)

  • 박인준;박양수;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.183-190
    • /
    • 2000
  • Effective range of Hydraulic Hammer Compaction was studied by numerical analysis instead of empirical method. Numerical analyses were carried out with commercial FEM code, ABAQUS, and verified by comparing the numerical results with field tests of Hydraulic Hammer Compaction. Most of material properties were evaluated by data from laboratory and in-situ tests. Vertical effective range was estimated by distribution curve of plastic strain energy dissipated through soil layers under dynamic load and these results were in good agreement with field tests. Based on verification, the effects of governing properties of Hydraulic Hammer Compaction such as number of hit can be determined by numerical analyses. In addition, vertical effective range can also be determined by Menard's empirical equation using the external work at converging time of plastic strain energy in numerical analysis. This implies that the minimum energy of Hydraulic Hammer Compaction for improvement can be determined by Menard's equation.

  • PDF

Assessment of Effective Doses in the Radiation Field of Contaminated Ground Surface by Monte Carlo Simulation (몬테칼로 시뮬레이션에 의한 지표면 오염 방사선장에서의 유효선량 평가)

  • Chang, Jai-Kwon;Lee, Jai-Ki;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.205-213
    • /
    • 1999
  • Effective dose conversion coefficients from unit activity radionuclides contaminated on the ground surface were calculated by using MCNP4A rode and male/female anthropomorphic phantoms. The simulation calculations were made for 19 energy points in the range of 40 keV to 10 MeV. The effective doses E resulting from unit source intensity for different energy were compared to the effective dose equivalent $H_E$ of previous studies. Our E values are lower by 30% at low energy than the $H_E$ values given in the Federal Guidance Report of USEPA. The effective dose response functions derived by polynomial fitting of the energy-effective dose relationship are as follows: $f({\varepsilon})[fSv\;m^2]=\;0.0634\;+\;0.727{\varepsilon}-0.0520{\varepsilon}^2+0.00247{\varepsilon}^3,\;where\;{\varepsilon}$ is the gamma energy in MeV. Using the response function and the radionuclide decay data given in ICRP 38, the effective dose conversion coefficients for unit activity contamination on the ground surface were calculated with addition of the skin dose contribution of beta particles determined by use of the DOSEFACTOR code. The conversion coefficients for 90 important radionuclides were evaluated and tabulated. Comparison with the existing data showed that a significant underestimates could be resulted when the old conversion coefficients were used, especially for the nuclides emitting low energy photons or high energy beta particles.

  • PDF

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

  • Kim, Min-Tae;Lee, Hae-Kag;Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • In this study, for 6-20 MeV electron beam energy occurring in a linear accelerator, the authors attempted to investigate the relation between the effective source-skin distance and the relation between the radiation field and the effective source-skin distance. The equipment used included a 6-20 MeV electron beam from a linear accelerator, and the distance was measured by a ionization chamber targeting the solid phantom. The measurement method for the effective source-skin distance according to the size of the radiation field changes the source-skin distance (100, 105, 110, 115 cm) for the electron beam energy (6, 9, 12, 16, 20 MeV). The effective source-skin distance was measured using the method proposed by Faiz Khan, measuring the dose according to each radiation field ($6{\times}6$, $10{\times}10$, $15{\times}150$, $20{\times}20cm^2$) at the maximum dose depth (1.3, 2.05, 2.7, 2.45, 1.8 cm, respectively) of each energy. In addition, the effective source-skin distance when cut-out blocks ($6{\times}6$, $10{\times}10$, $15{\times}15cm^2$) were used and the effective source-skin distance when they were not used, was measured and compared. The research results showed that the effective source-skin distance was increased according to the increase of the radiation field at the same amount of energy. In addition, the minimum distance was 60.4 cm when the 6 MeV electron beams were used with $6{\times}6$ cut-out blocks and the maximum distance was 87.2 cm when the 6 MeV electron beams were used with $20{\times}20$ cut-out blocks; thus, the largest difference between both of these was 26.8 cm. When comparing the before and after the using the $6{\times}6$ cut-out block, the difference between both was 8.2 cm in 6 MeV electron beam energy and was 2.1 cm in 20 MeV. Thus, the results showed that the difference was reduced according to an increase in the energy. In addition, in the comparative experiments performed by changing the size of the cut-out block at 6 MeV, the results showed that the source-skin distance was 8.2 cm when the size of the cut-out block was $6{\times}6$, 2.5 cm when the size of the cut-out block was $10{\times}10$, and 21.4 cm when the size of the cut-out block $15{\times}15$. In conclusion, it is recommended that the actual measurement is used for each energy and radiation field in the clinical dose measurement and for the measurement of the effective source-skin distance using cut-out blocks.

of Renovation for Green Building of Public BuildingA Study on Adequacy (공공 건축물의 그린빌딩화를 위한 리노베이션수법의 타당성 연구)

  • Hyun, Gun-Chul;Kim, Tae-Il;Yang, Gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.1-10
    • /
    • 2010
  • The aims of this study is to analyze that the double-skinned outer surface of building will be the effective measure to improve the use of space and save energy through the evaluation of the buildings renovation. In other words, it is significantly effective to increase the insulation of the outer surface where the most heat loss occurs; it is also energy-saving to convert the space created by pilotis in the southern and northern parts of the buildings into an double-skinned atrium. Research methods of this study are consisted with two steps, situation analysis and simulation analysis. IRISYS 1000 Series Imager was used for research of situation analysis and Visual DOE 4.0 was used for simulation analysis with the 1st Buildings of Jeju Special self-Governing Province. As results of simulation, it was proved that Double skin Method is more effective for green building than basic model. it was predicted to save 8.6% of energy by Double skin Method. Especially, in case of using of ventilation within double-skinned atrium, it was predicted that saving of energy was most effective than other method.