• Title/Summary/Keyword: Energy Dynamics

Search Result 1,635, Processing Time 0.025 seconds

Development of Online Machine Learning Model for AHU Supply Air Temperature Prediction using Progressive Sampling and Normalized Mutual Information (점진적 샘플링과 정규 상호정보량을 이용한 온라인 기계학습 공조기 급기온도 예측 모델 개발)

  • Chu, Han-Gyeong;Shin, Han-Sol;Ahn, Ki-Uhn;Ra, Seon-Jung;Park, Cheol Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.63-69
    • /
    • 2018
  • The machine learning model can capture the dynamics of building systems with less inputs than the first principle based simulation model. The training data for developing a machine learning model are usually selected in a heuristic manner. In this study, the authors developed a machine learning model which can describe supply air temperature from an AHU in a real office building. For rational reduction of the training data, the progressive sampling method was used. It is found that even though the progressive sampling requires far less training data (n=60) than the offline regular sampling (n=1,799), the MBEs of both models are similar (2.6% vs. 5.4%). In addition, for the update of the machine learning model, the normalized mutual information (NMI) was applied. If the NMI between the simulation output and the measured data is less than 0.2, the model has to be updated. By the use of the NMI, the model can perform better prediction ($5.4%{\rightarrow}1.3%$).

Energetic Electron and Proton Interactions with Pc5 Ultra Low Frequency (ULF) Waves during the Great Geomagnetic Storm of 15-16 July 2000

  • Lee, Eunah;Mann, Ian R.;Ozeke, Louis G.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.145-158
    • /
    • 2022
  • The dynamics of the outer zone radiation belt has received a lot of attention mainly due to the correlation between the occurrence of enhancing relativistic electron flux and spacecraft operation anomalies or even failures (e.g., Baker et al. 1994). Relativistic electron events are often observed during great storms associated with ultra low frequency (ULF) waves. For example, a large buildup of relativistic electrons was observed during the great storm of March 24, 1991 (e.g., Li et al. 1993; Hudson et al. 1995; Mann et al. 2013). However, the dominant processes which accelerate magnetospheric radiation belt electrons to MeV energies are not well understood. In this paper, we present observations of Pc5 ULF waves in the recovery phase of the Bastille day storm of July 16, 2000 and electron and proton flux simultaneously oscillating with the same frequencies as the waves. The mechanism for the observed electron and proton flux modulations is examined using ground-based and satellite observations. During this storm time, multiple packets of discrete frequency Pc5 ULF waves appeared associated with energetic particle flux oscillations. We model the drift paths of electrons and protons to determine if the particles drift through the ULF wave to understand why some particle fluxes are modulated by the ULF waves and others are not. We also analyze the flux oscillations of electrons and protons as a function of energy to determine if the particle modulations are caused by a ULF wave drift resonance or advection of a particle density gradient. We suggest that the energetic electron and proton modulations by Pc5 ULF waves provide further evidence in support of the important role that ULF waves play in outer radiation belt dyanamics during storm times.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

A Study on the Scale Effect and Improvement of Resistance Performance Based on Running Attitude Control of Small High-Speed Vessel (소형 고속선박의 항주자세 제어에 따른 저항성능 개선 및 축척 효과에 관한 연구)

  • Lee, Jonghyeon;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.538-549
    • /
    • 2021
  • In this study, a trim tab on the stern hull of a small high-speed vessel of approximately 10 m length sailing at a Froude number of 1.0 was designed for energy efficiency. The running attitude and resistance performance of the bare hull and trim tab hull at several angles to the base line were analyzed for model and full scale ships using computational fluid dynamics, and compared to investigate the scale effect. The analysis results for the bare hull were quite similar, but a difference in the attitude control under same conditions of the trim tab was observed, resulting in the total resistance error. However, there was no significant difference in tendency of the variation in the resistance with the attitude. Thus, the optimum running attitude could be determined from the tendency despite the scale effect, but a full scale analysis is required to analyze the control of the attitude by the trim tab and flow characteristics near the full scale ship.

Assessment of Overconsolidation Ratio by Depth of Soft Ground: A Case Study in South Korea (국내 연약지반의 심도별 과압밀비 산정에 관한 사례연구)

  • Lee, Jong-Young;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2021
  • In this study, the overconsolidation ratio (OCR) of soft clay soil was calculated by conducting an indoor physical experiment and a dynamics test using undisturbed soil samples from a soft clay soil field in South Korea. The OCR by depth was predicted by comparing the experimental results with the existing empirical equations. Methods using the liquidity index and the existing empirical equation by the Naval Facilities Engineering Systems Command (NAVFAC) were examined, and the results were compared with the actual measured values. The method using the liquidity index was found to be suitable for estimating the rough OCR of the ground. However, the effect of drying was not considered for the ground above the groundwater level. Therefore, an equation for the correlation equation between the depth and OCR of each region, including the ground above the groundwater level, was proposed. The proposed equation was applied to the OCR prediction of the adjacent area. The predicted values in the area composed of clay (CL, CH) were found to be in good agreement with the actual values. In the region composed of silt (ML), however, the predicted values were not consistent with the actual values. This suggests that the sedimentation and compositional characteristics, rather than the engineering characteristics of the soil, are important factors that affect the OCR prediction.

SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis

  • Papynov, E.K.;Belov, A.A.;Shichalin, O.O.;Buravlev, I. Yu;Azon, S.A.;Golub, A.V.;Gerasimenko, A.V.;Parotkina, Yu. А.;Zavjalov, A.P.;Tananaev, I.G.;Sergienko, V.I.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2289-2294
    • /
    • 2021
  • In the present study, an original spark plasma sintering-reactive synthesis (SPS-RS) method for minerallike ceramic materials based on SrAl2Si2O8 feldspar-like skeleton structure was used for the first time, promising solid-state matrices for reliable immobilization of high-energy 90Sr. The method is based on the "in-situ" reaction of a mixture of SrO, Al2O3 and SiO2 oxides when heated by a unipolar pulsed current under compacting pressure. The phase and elemental composition structure were studied. The dynamics of the consolidation of the reaction mixture of oxides was studied in the range of 900-1200 ℃. The study found the temperature of the high-speed (minutes) SPS-RS formation of single-phase SrAl2Si2O8 composition ceramic in the absence of intermediate reaction products with a relative density of up to 99.2% and compressive strength up to 145 MPa and a strontium leaching rate of 10-4g/cm2·day.

Research on no coal pillar protection technology in a double lane with pre-set isolation wall

  • Liu, Hui;Li, Xuelong;Gao Xin;Long, Kun;Chen, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.537-550
    • /
    • 2021
  • There are various technical problems need to be solved in the construction process of pre-setting an isolation wall into a double lane in the outburst prone mine. This study presents a methodology that pre-setting an isolation wall into a double lane without a coal pillar. This requires the excavation of two small section roadways to dig a wide section roadway, followed by construction of the separation wall. During this process the connecting lane is reserved. In order to ensure the stability of the separation wall, the required bearing capacity of the isolation wall is 4.66 MN/m and the deformation of the isolation wall is approximately 25 cm. To reduce the difficulty of implementing support the roadway is driven by 5 m/d. After the construction of the separation wall, the left side coal wall is brushed 1.5 m to make the width of the gas roadway reach 2.5 m and the roadway support utilizes anchor rod, ladder beam, anchor cable beam and net configuration. During construction, the concrete pump and removable self-propelled hydraulic wall mold are used to pump and pour the concrete of the isolation wall. In the process of mining, the stress distribution of coal body and isolation wall is detected and measured on site. The results demonstrate that the deformation of the surrounding rock of roadway and separation of roof in the roadway is small. The stress of the bolt and anchor cable is within equipment tolerance validating their selection. The roadway is well supported and the intended goal is achieved. The methodology can be used for reference for similar mine gas control.

Coupling effects of vortex-induced vibration for a square cylinder at various angles of attack

  • Zheng, Deqian;Ma, Wenyong;Zhang, Xiaobin;Chen, Wei;Wu, Junhao
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.437-450
    • /
    • 2022
  • Vortex-induced vibration (VIV) is a significant concern when designing slender structures with square cross sections. VIV strongly depends on structural dynamics and flow states, which depend on the conditions of the approaching flow and shape of a structure. Therefore, the effects of the angle of attack on the coupling effects of VIV for a square cylinder are expected to be significant in practice. In this study, the aerodynamic forces for a fixed and elastically mounted square cylinder were measured using wind pressure tests. Aerodynamic forces on the stationary cylinder are firstly discussed by comparisons of variation of statistical aerodynamic force and wind pressure coefficient with wind angle of attack. The coupling effect between the aerodynamic forces and the motion of the oscillating square cylinder by VIV is subsequently investigated in detail at typical wind angels of attack with occurrence of three typical flow regimes, i.e., leading-edge separation, separation bubble (reattachment), and attached flow. The coupling effect are illustrated by discussing the onset of VIV, characteristics of aerodynamic forces during VIV, and interaction between motion and aerodynamic forces. The results demonstrate that flow states can be classified based on final separation points or the occurrence of reattachment. These states significantly influence coupling effects of the oscillating cylinder. Vibration enhances vortex shedding, which creates strong fluctuations in aerodynamic forces. However, differences in the lock-in range, aerodynamic force, and interaction process for angles of attack smaller and larger than the critical angle of attack revealed noteworthy characteristics in the VIV of a square cylinder.

A Review on Multidecadal Coastal Changes at Funafuti, Tuvalu from 1897 to 2015

  • Ahmed, Harun-Al-Rashid;Chan-Su, Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.23-45
    • /
    • 2023
  • Tuvalu is a small reef islands country in the Pacific Ocean. Its coastal regions are very much dynamic due to the profound effects of tropical cyclones and sea level rise (SLR). However, research works on coastline dynamics of Tuvalu mainly cover its capital, Funafuti. Therefore, this review summarizes the extent of long-term coastal changes in different islets of Funafuti and on overall Tuvalu. In Funafuti, highly accreting areas are Te Afualiku, Fuafatu, Motugie, and Amatuku, and highly eroding areas are Fuagea and Tefala with the fully disappeared islet of Vasafua after 2005. However, in spite of different causes and supposition of scientists on disappearing these lands the accretion is more dominant than erosion which resulted in 7.3% net increase of land areas of Tuvalu over 117 years till 2015. Severe tropical cyclones mainly caused accretion of land areas by forming coral rubble rampart formation and further reworks and erosion to small sandy islands whereas frequent low-energy cyclones mainly caused erosion. Though, till now severe erosion of coastal areas are not evident by global SLR, islets of Funafuti experienced remarkable shoreline increase as formation of 30-40 m wide rubble rampart formation along 19 km in 1971 by tropical cyclone Bebe and net increase of area of 3.45 ha by tropical cyclone Pam in 2015. In spite of such overall accretion of coastal areas several scientists suspect drowning of its areas in future because of high SLR (~5.1±0.7 mm/year) at Funafuti which supposedly will not work as a breakwater anymore. Thus, protection measures should be taken to prevent coastline erosion as well as land reclamation activities should be done following the global examples.

Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT

  • Djilali, Nassira;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Selim, Mahmoud M.;Bourada, Fouad;Tounsi, Abdeldjebbar;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.779-789
    • /
    • 2022
  • This work presents a non-linear cylindrical bending analysis of functionally graded plate reinforced by single-walled carbon nanotubes (SWCNTs) in thermal environment using a simple integral higher-order shear deformation theory (HSDT). This theory does not require shear correction factors and the transverse shear stresses vary parabolically through the thickness. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are considered to be graded in the thickness direction, and are estimated through a micromechanical model. The non-linear strain-displacement relations in the Von Karman sense are used to study the effect of geometric non-linearity and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as benchmarks.