• Title/Summary/Keyword: Energy Dispersive X-ray Spectroscopy(EDX)

Search Result 146, Processing Time 0.042 seconds

Application of Biosynthesized Silver Nanoparticles Against a Cancer Promoter Cyanobacterium, Microcystis aeruginosa

  • El-Sheekh, Mostafa Mohamed;El-Kassas, Hala Yassin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6773-6779
    • /
    • 2014
  • Background: Nanotechnology opens new applications in many fields including medicine. Among all metallic nanoparticles, silver nanoparticles (silver NPS) have proved to be the most effective against a large variety of organisms including toxic cyanobacteria. Materials and Methods: Silver NPs were biosynthesized in vivo with different alga species namely, Spirulina piatensis, Chlorella vulgaris and Scenedesmus oh/iquus following two scenarios. First: by suspending a thoroughly washed algae biomass in 1 mM aqueous $AgN0_3$ solution. Second: by culturing them individually in culture media containing the same concentration of $AgN0_3$. Silver NPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive analysis (EDX) and Fourier transform infra-red (FfIR) spectroscopy. The biosynthesized silver NPs were tested for cytotoxic activity against a cancer promoter cyanobacteruim Microcystis aeruginosa, considering effects on cell viability and chlorophyll content. Results: The surface plasmon band indicated the biosynthesis of silver NPs at ~400 nm. Transmission electron microscopy (TEM) revealed that the silver NPs had a mean average size below 100 nm. Energy-dispersive analysis X-ray (EDX) spectra confirmed the presence of silver element. FfIR spectral analyses suggested that proteins and or polysaccharides may be responsible for the biosynthesis of silver NPs and (-COO-) of carboxylate ions is responsible for stabilizing them. The toxic potentialities ofthe biosynthesized silver NPs against the cancer promoter cyanobacterium, Microcystis aeruginosa showed high reduction in viable cells count and the total chlorophyll content. Conclusions: The potential activity of the biosynthesized silver NPs from the studied algae species against Microcystis aernginosa cells is expected to be mainly mediated by the release of silver ions (Ag+) from the particle surface and bioactive compounds as indicated by FfIR analysis.

Influence of Different Operational pH Conditions and Granulation on Enhanced Biological Sequencing Batch Phosphorus Removal (생물학적 회분식 인 제거 공정에서 pH의 영향과 그래뉼 생성)

  • Ahn, Johwan;Seviour, Robert
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.754-759
    • /
    • 2011
  • A sequencing batch reactor (SBR) was operated under different pH conditions to better understand the influence of pH to granulation in enhanced biological phosphorus removal systems. Granules from the SBR were also investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Considerable decreases in the amount of phosphorus released per substrate provided under anaerobic conditions and the content of biomass polyphosphate under aerobic conditions were observed when pH was changed from 7.5 to 7.0, followed by 6.5. Aerobic granulation was also observed at pH 7.0. A number of bacteria with the typical morphological traits of tetrad-forming organisms (TFOs) were observed at pH 7.0, including large members of cluster. Filamentous bacteria were also there in large numbers. The occurrence and growth of granules were further enhanced at pH 6.5. A SEM analysis showed that the aerobic granules had a compact microbial structure with shaperical shape and morphologically consisted of aggregates of small coccoid bacteria and filamentous bacteria encapsulated by extracellular polymeric substance. The main material ions identified by EDX moreover revealed that the structural materials for polyphosphate in the granules include phosphorus, potassium and calcium. Therefore, these results strongly suggested that PAOs are a dominant population in the microbial community of the aerobic granules.

Investigation of the luminescence properties of ZnO nanostructures (ZnO 나노 구조의 형상에 따른 발광 특성에 관한 연구)

  • Jung, Mi-Na;Ha, Seon-Yeo;Park, Seung-Hwan;Yang, Min;Kim, Hong-Seung;Lee, Uk-Hyeon;Yao, Takafumi;Chang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1013-1016
    • /
    • 2005
  • ZnO nanostructure was fabricated by catalyst-free method using Zn powder in air. The growth temperature was controlled from 450$^{\circ}$C to 600$^{\circ}$C, and the structural and optical properties were investigated by scanning electron microscopy (SEM), photoluminescence (PL), energy dispersive X-ray spectroscopy (EDX) and cathodoluminescence (CL). From all samples both ZnO tetrapods and clusters were observed. No significant dispersion was observed from the ZnO tetrapods, however, ZnO clusters show considerable change in density and size. From the EDX results, atomic composition difference was found. The clusters have O-deficiencies, while tetrapods have stoichiometric composition. Strong luminescence was observed at room temperature. From room temperature PL, UV emission at 380 nm and green emission at 500 nm were observed, and the intensity ratio ($I_{uv}/I_{green}$) increased as growth temperature increases. CL measurements show that the UV emission is closely related with tetrapods and the green emission is dominated from the clusters.

  • PDF

Characterization of coated colorless synthetic moissanite (코팅된 무색 합성 모이사나이트의 특징)

  • Choi, Hyunmin;Kim, Youngchool;Jang, Hansoo;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 2022
  • Recently, Hanmi Gemological Institute & Laboratory (HGI) had an opportunity to examine 5 transparent synthetic moissanite. The round brilliants ranged from 0.93 to 0.96 ct and had a colorless, pink, yellow, blue, and red color. Advanced testing results, including Fourier-transform infrared (FTIR) and Raman spectroscopy, identified all the specimens as synthetic moissanite. Under the microscope, all samples except the colorless were confirmed to be a synthetic moissanite coated with a colored film. EDXRF chemical analysis detected very weak X-ray fluorescence peak characteristics of Ca, Ti, and Co in the colored samples. These features were not detected in the colorless sample. Raman spectroscopy investigation was unable to detect the 1332 cm-1 (produced by sp3 bonding of carbon atoms) or the ~1550 cm-1 (produced by graphite-related sp2 bonding) peak in the colorless sample. The SEM image of the colorless sample showed no indication of a coating. The TEM image of the colorless sample revealed the presence of a 3~8 nm thick layer on the moissanite. Moreover, from the corresponding STEM Z-contrast image combined with the energy-dispersive X-ray spectroscopy (EDX) line profiles and EDX elemental maps, this layer was estimated to be carbon, silicon and oxygen.

Preparation and Characterization of Natural Material Extracted from Germinated Brown Rice

  • Lim, Ki-Taek;Choi, Jeong Moon;Lim, Won-Chul;Kim, Jangho;Cho, Hong-Yon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • Purpose: The aim of this study was to prepare and evaluate a natural material extracted from germinated brown rice (GBR). Herein, we evaluated whether the natural material could positively activate the biological effects seen during bone formation, including enhancement of metabolic activity, osteogenesis, and the expression of vascular endothelial growth factor (VEGF), one of the growth factors in human osteoblast-like cells. Methods: The natural material was created by a hot water extraction process after being soaked for 2~3 days in tap water and dried at $50^{\circ}C$. The material was characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transformed infrared (FTIR) spectroscopy. The biological behaviors of the material were also investigated; we performed tests to assess cell cytotoxicity, metabolic activity, osteogenic markers related to bone formation, and VEGF. Results: The EDX, XRD, and FTIR results for the natural material indicated the presence of organic compounds. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. The protein levels in the extract for the $6.25{\mu}g/mL$, $12.25{\mu}g/mL$, $25{\mu}g/mL$, $50{\mu}g/mL$, and $100{\mu}g/mL$ groups were significantly different from that for the control. Conclusions: The GBR-based natural material was easy to prepare and had characteristics of a potential biomaterial. The biocompatibility of this natural material was evaluated using in vitro techniques; our findings indicate that this novel material is promising for agricultural and biological applications.

Diamond-like Carbon Tribological Endurance using an Energetic Approach

  • Alkelae, Fathia;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.179-188
    • /
    • 2021
  • Reputed for their low friction coefficient and wear protection effect, diamond-like carbon (DLC) materials are considered amongst the most important lubricant coatings for tribological applications. In this framework, this investigation aims to elucidate the effect of a few operating parameters, such as applied stress and sliding amplitude on the friction lifetime of DLC coatings. Fretting wear tests are conducted using a 12.7 mm radius counterpart of 52100 steel balls slid against a substrate of the same material coated with a 2 ㎛ thickness DLC. Approximately, 5 to 57 N force is applied, generating a maximum Hertzian contact pressure of 430 to 662 MPa, corresponding to the applied force. The coefficient of friction (CoF) generates three regimes, first a running-in period regime, followed by a steady-state evolution regime, and finally a progressive increase of the CoF reaching the steel CoF value, as an indicator of reaching the substrate. To track the wear scenario, interrupted tests are performed with analysis combining scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), 3D profilometer and micro-Raman spectroscopy. The results show two endurance values: one characterizing the coating failure (Nc1), and the other (Nc2) indicating the friction failure which is situated where the CoF reaches a threshold value of μth = 0.3 in the third regime. The Archard energy density factor is used to determine the two endurance values (Nc1, Nc2). Based on this approach, a master curve is established delimitating both the coating and the friction endurances.

TiO2 Nanoparticles from Baker's Yeast: A Potent Antimicrobial

  • Peiris, MMK;Guansekera, TDCP;Jayaweera, PM;Fernando, SSN
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1664-1670
    • /
    • 2018
  • Titanium dioxide ($TiO_2$) has wide applications in food, cosmetics, pharmaceuticals and manufacturing due to its many properties such as photocatalytic activity and stability. In this study, the biosynthesis of $TiO_2$ nanoparticles (NPs) was achieved by using Baker's yeast. $TiO_2$ NPs were characterized by X-ray Diffraction (XRD), UV-Visible spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray analysis (EDX) studies. The XRD pattern confirmed the formation of pure anatase $TiO_2$ NPs. According to EDX data Ti, O, P and N were the key elements present in the sample. SEM and TEM revealed that the nanoparticles produced were spherical in shape with an average size of $6.7{\pm}2.2nm$. The photocatalytic activity of $TiO_2$ NPs was studied by monitoring the degradation of methylene blue dye when treated with $TiO_2$ NPs. $TiO_2$ NPs were found to be highly photocatalytic comparable to commercially available 21 nm $TiO_2$ NPs. This study is the first report on antimicrobial study of yeast-mediated $TiO_2$ NPs synthesized using $TiCl_3$. Antimicrobial activity of $TiO_2$ NPs was greater against selected Gram-positive bacteria and Candida albicans when compared to Gram-negative bacteria both in the presence or absence of sunlight exposure. $TiO_2$ NPs expressed a significant effect on microbial growth. The results indicate the significant physical properties and the impact of yeast-mediated $TiO_2$ N Ps as a novel antimicrobial.

Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag

  • Alawad, Omer Abdalla;Alhozaimy, Abdulrahman;Jaafar, Mohd Saleh;Aziz, Farah Nora Abdul;Al-Negheimish, Abdulaziz
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.381-390
    • /
    • 2015
  • Investigating the microstructure of hardened cement mixtures with the aid of advanced technology will help the concrete industry to develop appropriate binders for durable building materials. In this paper, morphological, mineralogical and thermogravimetric analyses of autoclave-cured mixtures incorporating ground dune sand and ground granulated blast furnace slag as partial cementing materials were investigated. The microstructure analyses of hydrated products were conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential thermal analysis (DTA), thermo-graphic analysis (TGA) and X-ray diffraction (XRD). The SEM and EDX results demonstrated the formation of thin plate-like calcium silicate hydrate plates and a compacted microstructure. The DTA and TGA analyses revealed that the calcium hydroxide generated from the hydration binder materials was consumed during the secondary pozzolanic reaction. Residual crystalline silica was observed from the XRD analysis of all of the blended mixtures, indicating the presence of excess silica. A good correlation was observed between the compressive strength of the blended mixtures and the CaO/$SiO_2$ ratio of the binder materials.

A Study on the Short Circuit Current and Molten Mark Analysis of Polyvinyl Chloride Insulated Flexible Cords (비닐코드의 단락전류 및 용융흔 분석에 관한 연구)

  • Choi, Chung-Seog;You, Sun-Hee;Yoo, Jae-Geun;Shong, Kil-Mok;Kim, Hyang-Kon;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1630-1632
    • /
    • 1999
  • In this paper, we studied the short circuit current and molten mark of polyvinyl chloride insulated flexible cords(VFF). The calory decreased remarkably with increase of current. The surface structure and composition of a strand wire were analyzed by stereoscope, scanning electron microscope (SEM), and energy dispersive x-ray spectroscopy(EDX). The surface of a strand wire showed columnar and void. The intensity of CuL spectrum increased in melted mark.

  • PDF

Incineration Technology of Bone Waste Using Thermal Plasma (열 플라즈마를 이용한 뼈 폐기물 소각 기술)

  • Kim, Woo-Hyung;Kim, Bong-Soo;Han, Sang-Won;Ki, Ho-Beom;Chae, Jae-Ou
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.15-19
    • /
    • 2006
  • The meat consumption produces a lot of bone waste everyday. Dumping bone waste without treatment results into environmental hazards. Conventional treatment by pyrolysis is slow, inefficient and produces hazardous by-products. In the work, an investigation of bone waste incinerated using thermal plasma technology is presented. A high temperature arc plasma torch operated at 33 kW was employed for the experiments. Bone waste was incinerated to remove the infectious organic matter and to vitrify the inorganic matter using plasma torch. Bone waste was reduced its 2/3 weight after the treatment. The process was highly efficient, economical, convenient, and fuel free. This method could be used as an alternative method for disposal of bone waste, small infectious animals, hazardous hospital waste, etc.

  • PDF