• Title/Summary/Keyword: Energy Dispersive Spectroscopy)

Search Result 806, Processing Time 0.025 seconds

SnO2/SiO2 Nanocomposite Catalyzed One-Pot Synthesis of 2-Arylbenzothiazole Derivatives

  • Yelwande, Ajeet A.;Navgire, Madhukar E.;Tayde, Deepak T.;Arbad, Balasaheb R.;Lande, Machhindra K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1856-1860
    • /
    • 2012
  • $SnO_2/SiO_2$ nanocomposite has been synthesized by using sol-gel method. Prepared catalytic materials has been well characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmer-Teller (BET) surface area, and temperature-programmed desorption of ammonia ($NH_3$-TPD). $SnO_2/SiO_2$ nanocomposite catalyzed synthesis of 2-arylbenzothiazoles by the cyclocondensation of 2-aminothiophenol and aromatic aldehydes under reflux condition in 1:1 EtOH:$H_2O$. After completion of the reaction, catalyst can be recovered efficiently and reused with consistent activity.

Facile Fabrication of Carbon Nanotubes@CuO Composites by Microwave Method

  • Kim, Tae Hyeong;Cha, Dun Chan;Jeong, Jung-Chae;Lee, Seunghyun
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.113-116
    • /
    • 2021
  • In this study, we report a facile fabrication of multi-walled carbon nanotubes (MWCNTs)-CuO composites synthesized by a microwave method using MWCNTs and copper oxide (CuO). The number of copper hydrate precursors affect the size and number of CuO domains formed along the MWCNTs in the composites. The domain size is controllable from 239 nm to 348 nm. The composites are characterized by transmission electron microscopy, energy dispersive spectrometry, X-ray diffraction (XRD), Raman spectroscopy, and UV-Vis spectroscopy. The CuO produced in the composites is confirmed to be tenorite with a monoclinic crystal structure through the XRD patterns of (-111), (111) and (-202).

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers

  • Kim, Yunsu;Kim, Do Hyun
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2303-2312
    • /
    • 2018
  • Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.

Improvement of the Wear Resistance of PP using Montmorillonite

  • Kim, Jae June;Ryu, Sung Hun;Oh, Jin Young
    • Elastomers and Composites
    • /
    • v.57 no.2
    • /
    • pp.40-47
    • /
    • 2022
  • The effects of maleic-anhydride-grafted polypropylene (PP-g-MAH) and montmorillonite (MMT) on the wear resistance of polypropylene (PP) were investigated. The surface of MMT was modified with 3-aminopropyltriethoxysilane, and the interfacial interaction between PP and MMT was improved using PP-g-MAH. Fourier-transform infrared spectroscopy was used to confirm that silane was grafted on the surface of MMT. The Taber abrasion test and scanning electron microscopy were used to determine the wear resistance and observe the surface morphology of PP, respectively, after wear testing. Energy-dispersive X-ray spectroscopy was used to compare the effects of PP-g-MAH and silane modification of MMT on the dispersion of MMT. The results indicated that silane was successfully grafted onto the surface of MMT. Moreover, the wear resistance of PP was improved by the addition of MMT. The wear resistance of PP composites comprising silane-modified MMT and PP-g-MAH was higher than those of other PP composites. This was attributed to silane improving the interfacial interaction between MMT and PP.

Comparative Tooth Morphology and Qualitative Analysis on the Enamel Surface using Energy Dispersive X-ray Spectroscopy in the White-Toothed Shrew Crocidura lasiura and C. suaveolens and the Red-Toothed Shrew Sorex caecutiens from Korea (한국 땃쥐속 우수리땃쥐 Crocidura lasiura와 작은땃쥐 C. suaveolens, 뒤쥐속 뒤쥐 Sorex caecutiens의 치아형태와 Energy Dispersive X-ray Spectroscopy를 이용한 법랑질 표면의 정성적 분석 비교)

  • Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.13 no.2
    • /
    • pp.203-212
    • /
    • 2013
  • The tooth morphology and qualitative mineral contents on enamel surface using energy dispersive X-ray spectroscopy, (EDX) were examined in the white-toothed shrew (genus Crocidura ) Crocidura lasiura and C. suaveolens and the red-toothed shrew (genus Sorex) Sorex caecutiens. In the case of C. lasiura and C. suaveolens, dental formula was found I 3/1 C1/1 P1/1 M3/3=28. The upper 1st and 2nd molars had an unequal W-shape formed by 5 cusps on the crown. The 3rd molar was found one-third the size of those of 1st and 2nd molars. The upper 1st incisor had two different sized hook-shapes and the lower 1st incisor was even. In the case of S. caecutiens, dental formula was found to be I3/1 C1/1 P3/1 M3/3=32. The upper 1st and 2nd molars had an equal W-shape on crown. The upper 3rd molar was half the size of those of the other molars. The upper 1st incisor possessed two similar sized hook-shapes and the lower 1st incisor had an uneven and serrated form. A comparison with the dental and cranial measurements revealed C. lasiura to be the largest of the three species (p<0.001) and C. suaveolens and S. caecutiens were similar in size (p>0.05). A qualitative analysis of mineral contents on enamel surface of the lower 1st incisor and lower 1st molar using EDX revealed C, O, P, Ca and Cu in all specimens and Pb was detected in several enamel specimens. No significant differences in the mineral contents (% weight) were observed among the three species (p>0.05). Fe was only detected on enamel surface of S. caecutiens with red pigmented teeth. Therefore, Fe is responsible for the red tip of the teeth. These results suggest that tooth morphological characteristics including the color of the tooth tip might be used as the key classifying species belonging to Crocidura and Sorex.

A Facile Combustion Synthesis Route for Performance Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC

  • Yoo, Young-Sung;Namgung, Yeon;Bhardwaj, Aman;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.497-505
    • /
    • 2019
  • Lanthanum-based transition metal cations containing perovskites have emerged as potential catalysts for the intermediate-temperature (600-800℃) oxygen reduction reaction (ORR). Here, we report a facile acetylacetone-assisted combustion route for the synthesis of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). The as-prepared powder was analyzed by thermogravimetry analysis-differential scanning calorimetry. The powder calcined at 800℃ was characterized by X-ray diffraction, scanning electrode microscopy, energy dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area measurements. It was found that the porosity of the air electrode significantly increased by utilizing the nanostructured LSCF6428 instead of commercial powder. The performance of a single cell fabricated with the nanostructured LSCF6428 cathode increased by 112%, from 0.4 to 0.85 W cm-2, at 700℃. Electrochemical impedance spectroscopy showed a considerable reduction in the area-specific resistance and activation energy from 133.5 to 61.5 kJ/mol, resulting in enhanced electrocatalytic activity toward ORR and overall cell performance.

A Study on the Carbonization and Strengthening of PAN Fiber by Microwave Plasma (마이크로웨이브 플라즈마를 이용한 탄화공정 및 PAN fiber의 강도 향상에 관한 연구)

  • Choi, Ji-Sung;Joo, Jung-Hoon;Lee, Hun-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.89-94
    • /
    • 2012
  • A study to replace a high temperature thermal carbonization process with microwave plasma process is carried for PAN fiber as a starting material. Near atmospheric pressure microwave plasma (1 Torr~45 Torr) was used to control to get the fiber temperature up to $1,000^{\circ}C$. Even argon is an inert gas, its plasma state include high internal energy particles; ion (15.76 eV) and metastable (11.52 eV). They are very effective to lower the necessary thermal temperature for carbonization of PAN fiber and the resultant thermal budget. The carbonization process was confirmed by both EDS (energy dispersive spectroscopy) of plasma treated fibers and OES (optical emission spectroscopy) during processing step as a real time monitoring tool. The same trend of decreasing oxygen content was observed in both diagnostic methods.

Microstructure Analysis of Ni-P-rGO Electroless Composite Plating Layer for PEM Fuel Cell Separator (고분자전해질 연료전지 분리판을 위한 Ni-P-rGO 무전해 복합도금층의 미세조직 분석)

  • Kim, Yeonjae;Kim, Jungsoo;Jang, Jaeho;Park, Won-Wook;Nam, Dae-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.199-204
    • /
    • 2015
  • Recently, fuel cell is a good alternative for energy source. Separator is a important component for fuel cell. In this study, The surface of separator was modified for corrosion resistance and electric conductivity. Reduced graphene oxide (rGO) was made by Staudenmaier's method. Nickel, phosphorus and rGO were coated on 6061 aluminum alloy as a separator of proton exchange membrane fuel cell by composite electroless plating. Scanning electron microscope, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were used to examine the morphology of Ni-P-rGO. Surface images were shown that the rGO was dispersed on the surface of Ni-P electroless plating, and nickel was combined with the un-reduced oxygen functional group of rGO.

Synthesis of Pt-Sn/Carbon Electrodes by Reduction Method for Direct Methanol Fuel Cell (환원법에 의한 직접 메탄올 연료전지(DMFC)용 Pt-Sn/Carbon 전극제조)

  • Jung, So-Mi;Shin, Ju-Kyung;Kim, Kwan-Sung;Baeck, Sung-Hyeon;Tak, Yong-Sug
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.537-541
    • /
    • 2010
  • Pt-Sn with various ratios was supported on carbon black after pretreatment in an acidic solution by a reduction method. The Pt/Sn ratio was controlled by varying the concentration of each component in the solution, and the influence of the composition on the electrocatalytic activities was investigated. The crystallinity of the synthesized materials was investigated by XRD (X-ray Diffraction), and the oxidation states of both the platinum and tin were determined by XPS (X-ray Photoelectron Spectroscopy). SEM (Scanning Electron Microscopy)-EDS (Energy Dispersive Spectroscopy) was utilized to examine the morphology and composition of the synthesized electrode, and the particle size of the Pt-Sn was analyzed by TEM (Transmission Electron Microscopy). The electrocatalytic activity for oxygen reduction was evaluated in a 0.5 M $H_2SO_4$ solution using a rotating disk electrode system. The activity and stability were found to be strongly dependent on the electrode composition (Pt/Sn ratio). The catalytic activity and stability for methanol oxidation were also measured using cyclic voltammetry (CV) in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. The addition of proper amount of Sn was found to significantly improve both catalytic activity and stability for methanol oxidation.

Synthesis and Characterization of a Series of PtRu/C Catalysts for the Electrooxidation of CO (일산화탄소 산화를 위한 PtRu/C 시리즈 촉매의 합성 및 특성 연구)

  • Lee, Seonhwa;Choi, Sung Mook;Kim, Won Bae
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.432-439
    • /
    • 2012
  • The electrocatalytic oxidation of CO was studied using carbon-supported 20 wt% PtRu (PtRu/C) catalysts, which were prepared with different Pt : Ru atomic ratios from 7 : 3 to 3 : 7 using a colloidal method combined with a freeze-drying procedure. The bimetallic PtRu/C catalysts were characterized by various physicochemical analyses, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). CO stripping voltammetry measurements indicated that the addition of Ru with a Pt catalyst significantly improved the electrocatalytic activity for CO electrooxidation. Among the tested catalysts, the $Pt_5Ru_5/C$ catalyst had the lowest onset potential (vs.Ag/AgCl) and the largest CO EAS. Structural modification via lattice parameter change and electronic modification in the unfilled d band states for Pt atoms may facilitate the electrooxidation of CO.