• Title/Summary/Keyword: Energy Diffusion

Search Result 1,547, Processing Time 0.032 seconds

Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

  • Chung, Y.D.;Yim, Seong Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.21-25
    • /
    • 2014
  • As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz.

Thermal Stabilization of Alumina by Ba Addition (Ba 첨가에 의한 알루미나의 열 안정화 효과)

  • Seo, Doo-Won;Han, Moon-Hee;Lee, Chae-Hyun
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.139-145
    • /
    • 1997
  • The effect of Ba addition on the thermal stabilization of $\gamma$-$Al_2O_3$ powders were studied. Ba additive was introduced into $\gamma$-$Al_2O_3$ powders by wet impregnation of $Ba(No_3)_3$.$6H_2O$. Ba additive was proved to be effective on the thermal stabilization of $\gamma$-$Al_2O_3$ powders by suppression of sintering. The optimum content of Ba was determined by 5 mol%, through the calcinations temperature range. It is suggested that the main reason of thermal stabilizaton is the substitution effect of large $Ba^{2+}$ ions into the $\Al^{3+}$ sites, which suppressed the surface diffusion of $\Al^{3+}$ ions.

  • PDF

Application of Separation Technology and Supercritical Fluids Process (초임계유체 공정과 분리기술의 응용)

  • Yoon, Soon-Do;Byun, Hun-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.123-143
    • /
    • 2012
  • Supercritical fluid technology (SFT) is recently one of the most new techniques, which has been interested various fields of related chemical industries. SFT is the most effective and practical technology with eco-friendly, energy-savings, and high efficiency as the technique using the advantages of supercritical fluid such as high solvation power, solubility, mass transfer rate, and diffusion rate. Especially, it is necessary to analyze, evaluate, and develop the potential of application techniques using SFT with these characterizations. Therefore in this review, the phase behavior in supercritical fluid at high temperature and pressure of monomers/polymers for the optimization of polymerization process are briefly described, and the preparation of molecularly imprinted polymers (MIPs) in supercritical fluid using supercritical polymerization and the performance evaluation of MIPs are introduced.

Influences of Electrodeposition Variables on the Internal Stess of Nanocrystalline Ni-W Films (나노결정질 Ni-W 합금전착의 내부응력에 미치는 공정조건 변수의 영향)

  • Kim, Kyung-Tae;Lee, Jung-Ja;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.275-279
    • /
    • 2012
  • Ni-W alloy deposits have lately attracted the interest as an alternative surface treatment method for hard chromium electrodeposits because of higher wear resistance, hardness at high temperature, and corrosion resistance. This study deals with influences of process variables, such as electodeposition current density, plating temperature and pH, on the internal stress of Ni-W nanocrystalline deposits. The internal stress was increased with increasing the applied current density. With increasing applied current density, the grain size of the deposit decreases and concentration of hydrogen in the deposit increases. The subsequent release of the hydrogen results in shrinkage of the deposit and the introduction of tensile stress in the deposit. Consequently, for layers deposited at high current density, cracking occurs readily owing to high tensile stress value. By increasing the temperature of the electrodeposition from $60^{\circ}C$ to $80^{\circ}C$, the internal stress was decreased. It seems that an increase in the number of active ions overcoming the activation energy at elevated temperature caused a decline in the concentration polarization and surface diffusion. It decreased the level of hydrogen absorption due to the lessened hydrogen evolution reaction. Therefore, the lower level of hydrogen absorption degenerated the hydride on the surface of the electrode, resulting in the reduction of the internal stress of the deposits. By increasing the pH of the electrodeposition from 5.6 to 6.8, the internal stress in the deposits were slightly decreased. It is considered that the decrease in internal stess of deposits was due to supply of W complex compound in cathode surface, and hydrogen ion resulted from decrease of activity.

Ga Distribution in Cu(In,Ga)Se2 Thin Film Prepared by Selenization of Co-Sputtered Cu-In-Ga Precursor with Ga2Se3 Layer (Ga2Se3 층을 Cu-In-Ga 전구체 위에 적용하여 제조된 Cu(In,Ga)Se2 박막의 Ga 분포 변화 연구)

  • Jung, Gwang-Sun;Shin, Young-Min;Cho, Yang-Hwi;Yun, Jae-Ho;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.434-438
    • /
    • 2010
  • The selenization process has been a promising method for low-cost and large-scale production of high quality CIGS film. However, there is the problem that most Ga in the CIGS film segregates near the Mo back contact. So the solar cell behaves like a $CuInSe_2$ and lacks the increased open-circuit voltage. In this study we investigated the Ga distribution in CIGS films by using the $Ga_2Se_3$ layer. The $Ga_2Se_3$ layer was applied on the Cu-In-Ga metal layer to increase Ga content at the surface of CIGS films and to restrict Ga diffusion to the CIGS/Mo interface with Ga and Se bonding. The layer made by thermal evaporation was showed to an amorphous $Ga_2Se_3$ layer in the result of AES depth profile, XPS and XRD measurement. As the thickness of $Ga_2Se_3$ layer increased, a small-grained CIGS film was developed and phase seperation was showed using SEM and XRD respectively. Ga distributions in CIGS films were investigated by means of AES depth profile. As a result, the [Ga]/[In+Ga] ratio was 0.2 at the surface and 0.5 near the CIGS/Mo interface when the $Ga_2Se_3$ thickness was 220 nm, suggesting that the $Ga_2Se_3$ layer on the top of metal layer is one of the possible methods for Ga redistribution and open circuit voltage increase.

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

Surface Modification of Polypropylene Membrane by ${\gamma}$ Irradiation Methods and their Solutes Permeation Behaviors

  • Shim, J. K.;Lee, S. H.;Kwon, O. H.;Lee, Y. M.;Nho, Y. C.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.99-101
    • /
    • 1998
  • 1. Introduction : The conventional grafting polymerization technique requires chemically reactive groups on the surface as well as on the polymer chains. For this reason, a series of prefunctionalization steps are necessary for covalent grafting. The surface prefunctionalizational technique for grafting can be used to ionization radiation, UV, plasma, ion beam or chemical initiators. Of these techniques, radiation method is one of the useful methods because of uniform and rapid creation of active radical sites without catalytic contamination in grafted samples. If the diffusion of monomer into polymer is large enough to come to the inside of polymer substrate, a homogeneous and uniform grafting reaction can be carried out throughout the whole polymer substrate. Radiation-induced grafting method may attach specific functional moieties to a polymeric substrate, such as preirradiation and simultaneous irradiation. The former is irradiated at backbone polymer in vacuum or nitrogen gas and air, and then subsequent monomer grafting by trapped or peroxy radicals, while the latter is irradiated at backbone polymer in the presence of the monomer. Therefore, radiation-induced polymerization can be used to modification of the chemical and physical properties of the polymeric materials and has attracted considerable interest because it imparts desirable properties such as blood compatibility. membrane quality, ion excahnge, dyeability, protein adsorption, and immobilization of bioactive materials. Synthesizing biocompatible materials by radiation method such as preirradiation or simultaneous irradiation has often used $\gamma$-rays to graft hydrophilic monomers onto hydrophobic polymer substrates. In this work, in attempt to produce surfaces that show low levels of anti-fouling of bovine serum albumin(BSA) solutions, hydroxyethyl methacrylate(HEMA) was grafted polypropylene membrane surfaces by preirradiation technique. The anti-fouling effect of the polypropylene membrane after grafting was examined by permeation BSA solution.

  • PDF

Effect of DC Bias on the Growth of Nanocrystalline Diamond Films by Microwave Plasma CVD (마이크로웨이브 플라즈마 CVD에 의한 나노결정질 다이아몬드 박막 성장 시 DC 바이어스 효과)

  • Kim, In-Sup;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The effect of DC bias on the growth of nanocrystalline diamond films on silicon substrate by microwave plasma chemical vapor deposition has been studied varying the substrate temperature (400, 500, 600, and $700^{\circ}C$), deposition time (0.5, 1, and 2h), and bias voltage (-50, -100, -150, and -200 V) at the microwave power of 1.2 kW, working pressure of 110 torr, and gas ratio of Ar/1%$CH_4$. In the case of low negative bias voltages (-50 and -100 V), the diamond particles were observed to grow to thin film slower than the case without bias. Applying the moderate DC bias is believed to induce the bombardment of energetic carbon and argon ions on the substrate to result in etching the surfaces of growing diamond particles or film. In the case of higher negative voltages (-150 and -200 V), the growth rate of diamond film increased with the increasing DC bias. Applying the higher DC bias increased the number of nucleation sites, and, subsequently, enhanced the film growth rate. Under the -150 V bias, the height (h) of diamond films exhibited an $h=k{\sqrt{t}}$ relationship with deposition time (t), where the growth rate constant (k) showed an Arrhenius relationship with the activation energy of 7.19 kcal/mol. The rate determining step is believed to be the surface diffusion of activated carbon species, but the more subtle theoretical treatment is required for the more precise interpretation.

Effects of rapid thermal annealing on Physical properties of polycrystalline CdTe thin films (급속열처리가 다결정 CdTe 박막의 물성에 미치는 효과에 관한 연구)

  • 조영아;이용혁;윤종구;오경희;염근영;신성호;박광자
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.348-353
    • /
    • 1996
  • Rapid thermal annealing (RTA) was applied to polycrystalline CdTe thin films evaporated on CdS/ITO/glass substrate and the effect of the annealing temperatures and the atmosphere on physical properties of polycrystalline CdTe thin films and CdTe/CdS solar cell characteristics were studied. Results obtained by EDX showed that the bulk composition of CdTe remained stoichiometric after annealing at $550^{\circ}C$ in the air but the surface composition became Cd-rich. Cross-sectional TEM and micro EDX showed that columnar grains and micro-twins remained even after RTA, however, and the sulfur content in the annealed CdTe (added by sulfur diffusion from CdS during the annealing) was much smaller than that by furnace annealing. Among the investigated RTA temperatures and gas environments, the cell made with CdTe annealed at $550^{\circ}C$ in air showed the best solar energy conversion efficiency.

  • PDF

Electrochemical Study of a Single Particle of Active Material for Secondary Battery using the Microelectrode (마이크로 전극에 의한 2차 전지용 활물질 단일 입자의 전기화학적 평가)

  • Kim Ho-Sung;Lee Choong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Electrochemical properties were studied for a single particle of active material of hydrogen storage alloy $(MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3})$ and nickel hydroxides $(NiOH)_2$ for the secondary Nickel Metal Hydride (Ni-MH) batteries using the microelectrode, which was manipulated to make electrical contact with an active material particle for cyclic voltammograms (CV) and potential-step experiments. As a result of CV test, it was found that three kinds of hydrogen oxidation peaks at -0.9, -0.75 and -0.65 V and hydrogen evolution peak at -0.98 V for hydrogen storage alloy were separately observed and two kinds of peaks of proton oxidation/reduction at 0.45 and 0.32 V and oxygen evolution reaction (OER) at 0.6 V for nickel hydroxides were also more clearly observed. Furthermore hydrogen diffusion coefficient within a single particle was also found to vary the order between $10^{-9}\;and\;10^{-10}cm^2/s$ over the course of hydrogenation and dehydrogenation process for potential-step experiments.