• Title/Summary/Keyword: Energy Corporation

Search Result 1,617, Processing Time 0.025 seconds

Insulation Performance and BOR of Pressurized Large-capacity Liquid Hydrogen Storage Tank (가압식 대용량 액체수소 저장탱크의 단열 성능과 BOR)

  • HEUNG SEOK SEO;YEONGBUM LEE;DONGHYUK KIM;CHANGWON PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.650-656
    • /
    • 2023
  • In order to efficiently control boil-off rate of a liquefied hydrogen tank, the important thing is to maintain an appropriate vacuum level. however, compared to small and medium-sized storage tank, it is very difficult to create and maintain vacuum in large-capacity storage tanks. In this study, we aim to determine the target level of future large-capacity storage tank technology development and secure basic data on performance test methods by analyzing the corelation between evaporation gas and thermal conductivity of liquefied hydrogen storage tanks.

A Study on Analysis of Reserves and Available Capacity of Unutilized Energy in Rural Community (농어촌지역 미활용에너지의 부존량과 이용 가능량 분석)

  • Park, Mi-Lan;Ryoo, Yeon-Su;Kim, Jin-Wook;Lee, Yong-Uk;Bae, Sung-Don;Chae, Kap-Byung
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • Alternative sources of energy take a higher interest in order to reduce the greenhouse gas under the Climate Change Convention, fossil fuel consumption, and lower social anxiety about nuclear power such as crisis involving the Fukushima plant, problem of obsolete equipment. The energy consumption of agriculture, forestry and fisheries in South Korea is 3,082,000toe by 2011, reliance on electrical energy(35%) and oil(57.2%) is very high with 92.2%. In this study, we examined reserves and available capacity of temperature difference energy for thermal discharge from plant, treated sewage, river water, dam, and agricultural reservoir in rural community. Reserves of unutilized energy are 455,735Tcal/yr in rural community, these accounts for 78% of total reserves 582,385Tcal/y. Thermal discharge from plant has the most reserves of unutilized energy in rural community, it is estimated that it has the reserves of 277,410Tcal/y. Available capacity of unutilized energy in rural community is total 134,147Tcal/y, thermal discharge from plant available for heating is the most 128,035Tcal/y, and it shows in the order of treated sewage 4,318Tcal/y, river water 1,653Tcal/y, and reservoir 141Tcal/y. Elevating temperature area of green house by 2012 is 21,208ha. The amount of energy required for heating the greenhouse a year is dbout 11,365Tcal/y with 8.5% of the total available capacity of unutilized energy.

Development on the M&V Protocol for DSM Investment Program (수요관리 투자사업의 성과검증(M&V)모형 개발)

  • Cho, Sung-Hwan;Choi, Bong-Ha;Kim, Euy-Kyung;Jeon, Ho-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.237-242
    • /
    • 2008
  • DSM(Demand Side Management) is reducing the load of energy supply utility through energy conservation and energy load distribution. This kind of program is necessary especially to our country which import above 97% of energy source. But the effectiveness of this kind program is not verified well even though our country is executing the various DSM programs. This study suggests M&V(Monitoring & Verification) guideline for DSM programs which are executing in Korea and shows the results which applied to verification of DSM programs.

  • PDF

Software Functional Requirements and Architectures of Microgrid Energy Management System

  • Sohn, Jin-Man;Yun, Sang-Yun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.269-272
    • /
    • 2016
  • Distribution management system or microgrid energy management system plays an important role in monitoring, operation and control of electrical distribution systems by utilizing IT infrastructure. Nowadays, the rapid increase of the distributed resources makes the conventional management system have some additional functionality for the reliable operation due to intermittent renewables and the efficient operation on the economical purpose. In this paper, the brief standard software functional requirements of microgrid energy management system are provided through survey of the recent commercial products of the major vendors, and furthermore the architectures of microgrid energy management system are provided in comparison with major suppliers' microgrid energy management system. The summary of investigation will be able to make the developers and researchers focus on the specific functionality in the real world.

An Analysis on Building Energy Load along Core Position, Area Ratio and Orientation (코어 위치와 종횡비 및 방위에 따른 건물 에너지 부하 분석)

  • Kim, Jin-Ho;Park, Woo-Pyoung;Shin, Seung-Ho;Min, Joon-Ki;Kim, Dong-Hoon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • In this Study, effect of core position, area ratio and orientation of building on energy load is examined using TRNSYS17. This parameters are major parameters of the conceptual design stage. Reference model is square floor plan($1,444m^2$), centered core and 29% core area ratio. As the results, without considering the building orientation, the annual heating load of central building with 1:1 area ratio is lowest ($10.33kWh/m^2yr$) and the annual cooling load of off-central building with 1:1 area ratio is lowest ($59.27kWh/m^2yr$). As area ratio is bigger, cooling load is lower and heating load is higher. But if we consider building orientation, orders of heating load and cooling load are changed for area ratio and orientation.

Korean V2G Technology Development for Flexible Response to Variable Renewable Energy (변동성 재생e 유연 대응을 위한 한국형 V2G 기술개발)

  • Son, Chan;Yu, Seung-duck;Lim, You-seok;Park, Ki-jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.329-333
    • /
    • 2021
  • V2G (Vehicle to Grid) technology for an EV (Electric Vehicle) has been assumed as so promising in a near future for its useful energy resource concept but still yet to be developed around the world for specific service purposes through various R&BD projects. Basically, V2G returns power stored in vehicle at a cheaper or unused time to the grid at more expensive or highly peaked time, and is accordingly supposed to provide such roles like peak shaving or load levelling according to customer load curve, frequency regulation or ancillary reserves, and balancing power fluctuation to grid from the weather-sensitive renewable sources like wind or solar generations. However, it has recently been debated over its prominent usage as diffusing EVs and the required charging/discharging infrastructure, partially for its addition of EV ownership costs with more frequent charging/discharging events and user inconvenience with a relative long-time participation in the previously engaged V2G program. This study suggests that a Korean DR (Demand Response) service integrated V2G system especially based upon a dynamic charge/pause/discharge scheme newly proposed to ISO/IEC 15118 rev. 2 can deal with these concerns with more profitable business model, while fully making up for the additional component (ex. battery) and service costs. It also indicates that the optimum economic, environmental, and grid impacts can be simulated for this V2G-DR service particularly designed for EV aggregators (V2G service providers) by proposing a specific V2G engagement program for the mediated DR service providers and the distributed EV owners.

Analysis on Insulation and Protection Characteristics of Grid Connected ESS in Ground/Short-Circuit Fault (지/단락실증시험에서 MW급 계통연계형 ESS 절연/보호시스템 성능 분석에 관한 연구)

  • Kim, Jin-Tae;Lee, Seung-Yong;Park, Sang-Jin;Cha, Han-Ju;Kim, Soo-Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.119-122
    • /
    • 2020
  • With recent ESS (Energy Storage System) fire accident, the fault protection performance is becoming more important. However, there has never been any experiments with the protection performance on the faults in the ESS system level. In this study, the effect of AC ground fault and IGBT (Insulated Gate Bipolar mode Transistor) short-circuit failure on MW class ESS was performed experimentally for the first time in the world. First of all, the effect of the AC single line ground fault on battery was analyzed. Moreover, the transient voltage was investigated as a function of the battery capacity and the power level. Finally, the breaking capability and insulation performance of ESS were examined under PCS short-circuit fault condition. Through the tests, it was found that ESS protection system safely blocked the faulty current regardless of the faults, whereas the electronic parts such as IGBT and MC (Magnetic Contactor) were broken by the fault current. Also, the electrical breakdown in ESS resulted from the transient voltage during the protection process.

Study on the Multi-Zone Furnace Analysis Method for Power Plant Boiler (발전용 보일러에 대한 다중영역분할 화로해석 기법의 활용성 연구)

  • Baek, SeHyun;kim, Donggyu;Lee, Jang Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.427-432
    • /
    • 2020
  • In this study, a multi-zone furnace analysis method that couples a 1D energy and mass balance calculation with a 3D radiative heat transfer calculation is tested in order to verify its reliability. The calculated results for a domestic 500 MW capacity coal-fired boiler furnace were compared with the design data of the boiler manufacturer and CFD analysis, and a good agreement was achieved. Although this calculation method is less sophisticated than the CFD furnace analysis, it has an advantage in terms of calculation time while being able to provide the furnace behavior according to the fuel characteristics and operational variable changes. Therefore, it is expected to be useful for boiler operation diagnosis and daily fuel/operation planning.

Co-combustion of Bituminous Coal with Anthracite in a Down-firing, 200 MW Boiler

  • Park, Ho Young;Baek, Se Hyun;Kim, Young Joo;Kim, Tae Hyung;Kim, Hyun Hee;Lim, Hyun Soo;Park, Yoon Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.93-97
    • /
    • 2015
  • The combustion tests for Korean anthracite-bituminous coal blend were carried out in the 200 MW utility boiler. The burning characteristics of the blend were studied with a thermogravimetric analyzer (TGA). From the observation of TGA burning profiles, it was found that the presence of bituminous coal in the blend appeared to enhance the reactivity of anthracite in the higher temperature region, indicating certain interactions between the two coals. The plant test showed the boiler operation was reasonably stable with somewhat poor combustion efficiency, and some modification of the combustion environment in the furnace is necessitate for the further stable plant operation.