• Title/Summary/Keyword: Energy Control

Search Result 9,894, Processing Time 0.993 seconds

The Application of Piezoelectric Materials in Smart Structures in China

  • Qiu, Jinhao;Ji, Hongli
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.266-284
    • /
    • 2010
  • Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, the research activities and achievements on the applications of piezoelectric materials in smart structures in China, including vibration control, noise control, energy harvesting, structural health monitoring, and hysteresis control, are introduced. Special attention is given to the introduction of semi-active vibration suppression based on a synchronized switching technique and piezoelectric fibers with metal cores for health monitoring. Such mechanisms are relatively new and possess great potential for future applications in aerospace engineering.

Power Management of Open Winding PM Synchronous Generator for Unbalanced Voltage Conditions

  • EL-Bardawil, Ashraf;Moussa, Mona Fouad
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2192-2201
    • /
    • 2016
  • Wind energy is currently the fastest-growing electricity source worldwide. The cost efficiency of wind generators must be high because these generators have to compete with other energy sources. In this paper, a system that utilizes an open-winding permanent-magnet synchronous generator is studied for wind-energy generation. The proposed system controls generated power through an auxiliary voltage source inverter. The VA rating of the auxiliary inverter is only a fraction of the system-rated power. An adjusted control system, which consists of two main parts, is implemented to control the generator power and the grid-side converter. This paper introduces a study on the effect of unbalanced voltages for the wind-generation system. The proposed system is designed and simulated using MATLAB/Simulink software. Theoretical and experimental results verify the validity of the proposed system to achieve the power management requirements for balanced and unbalanced voltage conditions of the grid.

Sensorless Vector Control of Induction Motors for Wind Energy Applications Using MRAS and ASO

  • Jeong, Il-Woo;Choi, Won-Shik;Park, Ki-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.873-881
    • /
    • 2014
  • Speed sensorless modes of operation are becoming standard solution in the area of electric drives. This paper presents flux estimator and speed estimator for the speed sensorless vector control of induction motors. The proposed sensorless methods are based on the model reference adaptive system (MRAS) observer and adaptive speed observer (ASO). The proposed speed estimation algorithm can be employed in the power control of grid connected induction generator for wind power applications. Two proposed schemes are verified through computer simulation PSIM and compared their simulation results.

Recirculation Operation in a Liquid Metal Reactor with a Superheated Steam Cycle

  • Sub Sim Yoon;Hyuk Eoh Jae;Ja Song Soon;Hwan Wi Myung
    • Nuclear Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.261-273
    • /
    • 2003
  • The characteristics of the recirculation operation of LMR which are different from the conventional plants such as PWR and fossil fuel plants were investigated using a computer code TSGS developed in this study. For simulating the transient behavior of the steam generation system, a water level control algorithm utilizing digital control hardware features was introduced. By investigation, the function of the recirculation operation was defined, the major features of the operation were found. Also good performance of the level control algorithm was confirmed.

Lessons Learned from Energy Storage System Demonstrations for Primary Frequency Control

  • Yu, Kwang-myung;Choi, In-kyu;Woo, Joo-hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권2호
    • /
    • pp.107-114
    • /
    • 2018
  • In recent years, ESS (Energy Storage System) has been widely used in various parts of a power system. Especially, due to its fast response time and high ramp rate, ESS is known to play an important role in regulating grid frequency and providing rotational inertia. As the number of installed and commercially operating ESSs increases, the reliability becomes an important issue. This paper introduces control schemes and presents its test method for grid-connected ESS for primary frequency regulation. The test method allows to verify the control operation in the individual operation mode and state. A validation of the method through actual ESS test in a electrical substation is presented in the case study section.

광대역 잡음의 전역 감쇠를 위한 에너지 밀도 제어 (Energy Density Control for the Global Attenuation of Broadband Noise Fields)

  • 박영철;윤정현;윤대희;차일환
    • 한국음향학회지
    • /
    • 제15권2호
    • /
    • pp.21-32
    • /
    • 1996
  • 본 논문에서는 일차원 밀폐함 내의 광대역 소음을 제어하기 위한 에너지 밀도(energy density)제어 알고리듬의 성능을 평가한다. 주파수 영역에서 최적 능동 소음 제어 필터를 설계할 경우 종종 시간 영역에서 물리적으로 실현할 수 없는 결과를 얻게 된다. 이런 문제를 피하기 위해 본 논문에서는 시간 영역에서 문제를 해석한다. 이러한 접근 방법은 항상 물리적으로 실현 가능한 최적 제어기를 얻을 수 있게 해준다. 능동 소음 제어 시스템의 성능을 예측하기 위해 실시간 모의 실험 결과로부터 음압을 최소화 하는 것보다 에너지 밀도를 최소화 하는 것이 광대역 소음의 전역적인 감쇠(global attenuation)에 있어서 향상된 결과를 얻을 수 있음을 확인할 수 있다. 또한 특정 지점에서, 검출된 에너지 밀도를 최소화할 경우 밀폐함 내에 있는 위치 에너지를 최소화하는 방법에서 얻을 수 있는 결과와 유사한 정도의 소음 전역 감쇠를 얻을 수 있었다. 그리고 음압 자승 제어 방법과는 달리 에너지 밀도 제어 방법은 일차원 음장에서 사용하는 경우 오차 센서의 위치에 영향을 받지 않음을 알 수 있다. 본 논문은 또한 에너지 밀도 제어 알고리듬의 실제 구현시에 일반적으로 사용되는 두 개의 센서를 사용하는 구현 기술을 살펴보고, 이 기술이 큰 성능 저하 없이 에너지 밀도 제어 알고리듬을 구현할 수 있음을 보인다.

  • PDF

DEVELOPMENT OF REACTOR POWER CONTROL LOGIC FOR THE POWER MANEUVERING OF KALIMER-600

  • Seong, Seung-Hwan;Kang, Han-Ok;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.329-338
    • /
    • 2010
  • We developed an achievable control logic for the reactor power level during a power maneuvering event and set up some constraints for the control of the reactor power in a conceptual sodium-cooled fast reactor (KALIMER-600) that was developed at KAERI. For simulating the dynamic behaviors of the plant, we developed a fast-running performance analysis code. Through various simulations of the power maneuvering event, we evaluated some suggested control logic for the reactor power and found an achievable control logic. The objective of the control logic is to search for the position of the control rods that would keep the average temperature of the primary pool constant and, concurrently, minimize the power deviation between the reactor and the BOP cycle during the power maneuvering. In addition, the flow rates of the primary pool and the intermediate loop should be changed according to the power level in order to not violate the constraints set up in this study. Also, we evaluated some movement speeds of the control rods and found that a fast movement of the control rods might cause the power to fluctuate during the power maneuvering event. We suggested a reasonable movement speed of the control rods for the developed control logic.

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.

A STUDY ON EXPERIMENTAL CHARACTERISTICS OF ENERGY ABSORPT10N CONTROL IN THIN-WALLED TUBES FOR THE USE OF VEHICULAR- STRUCTURE MEMBERS

  • Kim, S.-K.;Im, K.-H.;Hwang, C.-S.;Yang, I.-Y.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.137-145
    • /
    • 2002
  • Automobiles should be designed to meet the requirements and standards for the protections of passengers in a car accident. One of safety factors is an absorbing capacity in collision. Many vehicles have been designed based on the criterion of the absorbing capacity. Therefore a controller has been developed in order to control and increase the absorbing capacity of impact energy in automobile collision. The capacity of impact energy will be improved regardless of vehicular-structure members and shapes. An air-pressure horizontal impact tester for crushing has been built up for the evaluation of energy absorbing characteristics in collision. Influence of height, thickness and clearance in the controller have been considered to predict and control the energy absorbing capacity. Aluminum alloy (Al) tubes (30,39,44 m in inner dia. and 0.8, 1.0, 1.2 m in thickness) are tested by axial loading. The energy absorbing capacity of Al tubes have been estimated in cases of with-controller and without-controller. respectively based on height. thickness, clearance of an controller.