• Title/Summary/Keyword: Energy Control

Search Result 9,894, Processing Time 0.044 seconds

Effects of the electronic expansion valve and variable velocity compressor on the performance of a refrigeration system

  • Lago, Taynara G.S.;Ismail, Kamal A.R.;Nobrega, Claudia R.E.S.;Moura, Luiz F.M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • Energy consumption of air-conditioning and refrigeration systems is responsible for about 25 to 30% of the energy demand especially in hot seasons. This equipment is mostly electricity dependent and their use in principle affects negatively the environment. Enhancing the energy efficiency of the existing equipment is important as one of the measures to reduce environment impacts. This paper reports the results of an experimental study to evaluate the impacts of the use electronic expansion valve and variable velocity compressor on the performance of vapor compression refrigeration system. The experimental rig is composed of two independent circuits one for the vapor compression system and the other is the secondary fluid system. The vapor compression system is composed of a forced air condenser unit, evaporator, hermetic compressor and expansion elements, while the secondary system has a pump for circulating the secondary fluid, and an air conditioning heat exchanger. The manufacturer's data was used to determine the optimal points of operation of the system and consequently tests were done to evaluate the influence of variation of the compressor velocity and the opening of the expansion device on the performance of the refrigeration system. A fuzzy logic model was developed to control the rotational velocity of the compressor and the thermal load. Fuzzy control model was made in LabVIEW software with the objective of improving the system performance, stability and energy saving. The results showed that the use of fuzzy logic as a form of control strategy resulted in a better energy efficiency.

Development of control and monitoring board for building energy saving valve (빌딩 에너지 절감 밸브용 제어 및 감시 보드 개발)

  • Oh, Jin-Seok;Kang, Young-Min;Jang, Jae-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.895-902
    • /
    • 2018
  • Energy consumption in buildings is close to 40% of the total national energy consumption in developed countries such as US and Japan, and Korea accounts for 24% of total energy consumption. In buildings, HVAC can't freely control the cooling flow rate according to the required calorie, so energy is not used efficiently. Therefore, by using the energy saving valve, the flow rate can be controlled by the required amount of heat and the energy can be saved. In this paper, we define basic conditions and develop control and monitoring boards for building energy saving valves based on PIC processor with low power and high cost-effectiveness. The designed board displays and transmits in real time information about two temperature values, flow values and calculated calories for temperature difference measurement. The developed board will be useful for real - time monitoring of the state of the valve in the future and development of the valve for the offshore.

Detection of Pulmonary Region in Medical Images through Improved Active Control Model

  • Kwon Yong-Jun;Won Chul-Ho;Kim Dong-Hun;Kim Pil-Un;Park Il-Yong;Park Hee-Jun;Lee Jyung-Hyun;Kim Myoung-Nam;Cho Jin-HO
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.357-363
    • /
    • 2005
  • Active contour models have been extensively used to segment, match, and track objects of interest in computer vision and image processing applications, particularly to locate object boundaries. With conventional methods an object boundary can be extracted by controlling the internal energy and external energy based on energy minimization. However, this still leaves a number of problems, such as initialization and poor convergence in concave regions. In particular, a contour is unable to enter a concave region based on the stretching and bending characteristic of the internal energy. Therefore, this study proposes a method that controls the internal energy by moving the local perpendicular bisector point of each control point on the contour, and determines the object boundary by minimizing the energy relative to the external energy. Convergence at a concave region can then be effectively implemented as regards the feature of interest using the internal energy, plus several objects can be detected using a multi-detection method based on the initial contour. The proposed method is compared with other conventional methods through objective validation and subjective consideration. As a result, it is anticipated that the proposed method can be efficiently applied to the detection of the pulmonary parenchyma region in medical images.

A Elicitation Method of Optimum Slat Angle of Fixed Venetian Blind Considering Energy Performance and Discomfort Glare in Buildings (건물에너지성능 및 불쾌현휘를 고려한 고정형 블라인드의 최적 슬랫각도 도출 방법에 관한 연구)

  • Park, Jang Woo;Yoon, Jong Ho;Oh, Myung-Hwan;Lee, Kwang-Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.107-112
    • /
    • 2012
  • The purpose of this study is to determine the optimum slat angle of the venetian blind which was applied at an outer skin of a curtain-wall system. The evaluation of the blind slat angle was performed in terms of the comfortable visual environment and decreased energy consumption. The office building prototype was considered for the analysis and simulation variables include application of blind, blind slat angle and dimming control of lighting. The annual energy consumption and incidence rate of discomfort glare were analyzed using EnergyPlus which is developed by the U. S. Department of Energy for the detailed building energy simulation. As a result, it turns out that when the blind (reflectance: 0.5) was installed, the annual energy consumption was greater than that of the base model. However, when the dimming control was applied, the maximum energy saving of 16.3% could be achieved at a slat angle of $0^{\circ}$. In addition, in case of the base model, the incidence rate of discomfort glare was 84%, while the case of the blind with the slat angle of $0^{\circ}$ showed that the incidence rate of discomfort glare was 42.4%. Consequently, the results showed that the slat angle of $55^{\circ}$ with dimming control was the optimum strategy for the comfortable visual environment and decreased energy consumption.

Predicted Performance of the Integrated Artificial Lighting System in Relation to Daylight Levels (채광시스템과 인공조명설비의 통합기술 및 성능평가연구)

  • Kim, G.;Kim, J.T.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.47-56
    • /
    • 2002
  • The office is an excellent candidate for implementing daylighting techniques because of the relatively high electric lighting power densities and long daytime use pattern. The quantity of light available for a space can be translated in term of the amount of energy savings through a process of a building energy simulation. To get significant energy savings in general illumination, the electric lighting system must be incorporated with a daylight - activated dimmer control. A prototype configuration of an office interior has been established and the integration between the building envelope and lighting and HVAC systems is evaluated based on computer modeling of a lighting control facility. First of all, an energy-efficient luminaire system is designed for both a totally open-plan office interior and a partitioned office. A lighting design and analysis program, Lumen-Micro 2000 predicts the optimal layout of a conventional fluorescent lighting fixture to meet the designed lighting level and calculates unit power density, which translates the demanded amount of electric lighting energy. A dimming control system integrated with the contribution of daylighting has been applied to the operating of the artificial lighting. Annual cooling load due to lighting and the projecting saving amount of cooling load due to daylighting under overcast diffuse sky are evaluated by a computer software, ENER-Win. In brief, the results from building energy simulation with measured daylight illumination levels and the performance of lighting control system indicate that daylighting can save over 70 percent of the required energy for general illumination in the perimeter zones through the year. A 25 % of electric energy for cooling may be saved by dimming and turning off the luminaires in the perimeter zones.

Automation Development in Water and Wastewater Systems

  • Olsson, Gustaf
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.197-200
    • /
    • 2007
  • Advanced control is getting increasingly demanded in water and wastewater treatment systems. Various case studies have shown significant savings in operating costs, including energy costs, and remarkably short payback times. It has been demonstrated that instrumentation, control and automation (ICA) may increase the capacity of biological nutrient removing wastewater treatment plants by 10-30% today. With further understanding and exploitation of the mechanisms involved in biological nutrient removal the improvements due to ICA may reach another 20-50% of the total system investments within the next 10-20 years. Disturbances are the reason for control of any system. In a wastewater treatment system they are mostly related to the load variations, but many disturbances are created also within the plant. In water supply systems some of the major disturbances are related the customer demand as well as to leakages or bursts in the pipelines or the distribution networks. Hardly any system operates in steady state but is more or less in a transient state all the time. Water and energy are closely related. The role of energy in water and wastewater operations is discussed. With increasing energy costs and the threatening climate changes this issue will grow in importance.

Fuzzy Technique based Chopper Control for Slip Energy Recovery System with Twelve-Pulse Converter

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.509-514
    • /
    • 2004
  • This paper introduces the modified slip energy recovery system in order to improve its power factor and to reduce harmonics of line current waveforms. Twelve pulse line commutated converter with the chopper type IGBT is applied where the chopper is applied across the DC terminal and the chopped DC is fed to the converter operating as an inverter and then passed through the wye-wye and delta-wye transformer circuit. This scheme leads to be able to adjust the speed of the motor by the duty cycle of the chopper operating in PWM mode. The fuzzy logic controller is also introduced to the modified slip energy recovery system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW wound rotor induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.

  • PDF

A Fundamental Study of Optimization to Control on Height of Roller Shade in Office Building through Mock-up Experiment (Mock-up 실험을 통한 사무소 건축물의 Roller Shade 높이 제어 최적화에 관한 기초적 연구)

  • Lim, Ji-Sun;Kim, Yu-Sin;Choi, An-Seop;Lee, Jeong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.148-153
    • /
    • 2008
  • An inflow of daylight to the room offers comfortable view environment, psychological and physical security to people in the room and there are merits such as a work efficiency and energy saving. But, it has many problems as an excessive direct sunlight, cooling and heating. We can expect to have energy saving effect for illumination with comfortable view environment creation through control on height of roller shade. This study will be a used a fundamental approach to control on height of roller shade to changing daylight.

  • PDF

Bilateral Control with Time Domain Passivity Approach under Time-varying Communication Delay: Resetting Scheme (시간영역 수동성 기법을 이용하여 시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기: 리셋 방법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1124-1129
    • /
    • 2008
  • Recently, two-port time-domain passivity approach was modified for time-varying communication delay. The newly proposed approach could achieve stable teleoperation even under the serious time-varying delay and packet loss communication condition. However, after some operation hour, the accumulated energy difference between the input energy from one port and the output energy at the other port caused unstable behavior until the passivity controller is activated. Resetting scheme is introduced for solving this problem, and stable bilateral teleoperation can be guaranteed without worrying about the accumulated energy difference.

Development of An Integrated Test Facility (ITF) for the Advanced Man Machine Interface Evaluation

  • Oh, In-Seok;Cha, Kyung-Ho;Lee, Hyun-Chul;Sim, Bong-Sick
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.117-122
    • /
    • 1995
  • An Integrated Test Facility(ITF) is a human factors experimental environment to evaluate an advanced man machine interface(MMI) design. The ITF includes a human machine simulator(HMS) comprised of a nuclear power plant function simulator, man-machine interface, experiment control station for the experiment control and design, human behavioural data measurement system, and data analysis and experiment evaluation supporting system(DAEXESS). The most important features of ITF is to secure the flexibility and expandibility of Man Machine Interlace(MMI) design to change easily the environment of experiments to accomplish the experiment's objects In this paper, we describe a development scope and characteristics of the ITF such as, hardware and software development scope and characteristics, system thermohydraulic modelling characteristics, and experiment station characteristics for the experiment variables design and control, to be used as an experiment environment for the evaluation of VDU-based control room.

  • PDF