• Title/Summary/Keyword: Energy Control

Search Result 9,894, Processing Time 0.039 seconds

Robust Controller with Adaptation within the Boundary Layer Application to Nuclear Underwater Inspection Robot

  • Park, Gee-Yong;Yoon, Ji-Sup;Hong, Dong-Hee;Jeong, Jae-Hoo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • In this paper, the robust control scheme with the improved control performance within the boundary layer is proposed. In the control scheme, the robust controller based on the traditional variable structure control method is modified to have the adaptation within the boundary layer. From this controller, the width of the boundary layer where the robust control input is smoothened out can be given by an appropriate value. But the improved control performance within the boundary layer can be achieved without the so-called control chattering because the role of adaptive control is to compensate for the uncovered portions of the robust control occurred from the continuous approximation within the boundary layer Simulation tests for circular navigation of an underwater wall-ranging robot developed for inspection of wall surfaces in the research reactor, TRIGA MARK III, confirm the performance improvement. Notational Conventions Vectors are written in boldface roman lower-case letters, e.g., x and y. Matrices are written in upper-case roman letters, e.g., G and B. And ∥.∥ means the Euclidean norm.

Effects of Control Methods of Outdoor Air Cooling System on Energy Consumption in Building (외기냉방 시스템의 제어방법이 에너지 소비량에 미치는 영향에 관한 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4253-4259
    • /
    • 2015
  • In this study, the effects of various control methods of outdoor air cooling control system on control characteristics and energy consumption in building are researched by simulation. The system analysis modelling is done by using TRNSYS program package, and the control performances with existing outdoor air cooling methods are compared with the control ones without outdoor air cooling. As a result, appropriate operating temperature conditions of outdoor air cooling system according to outdoor temperature changes are required, and the outdoor air/return air dry bulb temperature comparison control method among the control methods shows best responses in energy savings.

A Study on Fuzzy Control Method of Energy Saving for Activated Sludge Process in Sewage Treatment Plant (하수처리 활성오니공정의 에너지 절감을 위한 퍼지 제어 방법에 관한 연구)

  • Nahm, Eui-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1477-1485
    • /
    • 2018
  • There are two major issues for activated sludge process in sewage treatment plant. One is how to make sewage be more clean and the other is the energy saving in sewage treatment process. The major monitoring sewage qualities are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent. These are transmitted to the national TMS(Telemetry Monitoring System) at every hour. If these exceed the environmental standard, the environmental charges imposed. So, these water qualities are to be controlled below the environmental standard in operation of sewage treatment plant. And recently, the energy saving is also important in process operation. Over 50% energy is consumed in blowers and motors for injection oxygen into aeration tank. So, with the water qualities to be controlled below the environmental standard, the energy saving also is to be accomplished for efficient plant management. Almost researches are aimed to control water quality without considering energy saving. AI techniques have been used for control water quality. AI modeling simulator provided the optimal control inputs(blower speed, waste sludge, return sludge) for control water quality. Blower speed is the main control input for activated sludge process. To make sewage be more clean, the excessive blower speed is supplied, but water quality is not better than the previous. In results, non necessary energy is consumed. In this paper we propose a new method that the energy saving also is to be accomplished with the water qualities to be controlled below the environmental standard for efficient plant management. Water qualities in only aeration tank are used the inputs of fuzzy models. Outputs of these models are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent and have the environmental standards. In test, we found this method could save 10% energy than the previous methods.

Stand-Alone Wind Energy Conversion System with an Asynchronous Generator

  • Singh, Bhim;Sharma, Shailendra
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.538-547
    • /
    • 2010
  • This paper deals with a stand-alone wind energy conversion system (WECS) with an isolated asynchronous generator (IAG) and voltage and frequency (VF) control feeding three-phase four-wire loads. The reference generator currents are estimated using the instantaneous symmetrical component theory to control the voltage and frequency of an IAG system. A three-leg voltage source converter (VSC) with an isolated star/delta transformer is used as an integrated VSC. An integrated VSC with a battery energy storage system (BESS) is used to control the active and reactive powers of the WECS. The WECS is modeled and simulated in MATLAB using the Simulink and the Sim Power System (SPS) toolboxes. The proposed VF controller functions as a voltage and frequency regulator, a load leveler, a load balancer and a harmonic eliminator in the WECS. A comparison is made on the rating of the VSC with and without ac capacitors connected at the terminals of an IAG. Simulation and test results are presented to verify the control algorithm.

A Robust PID Control Algorithm for a Servo Manipulator with Friction

  • Jin, Jae-Hyun;Park, Byung-Suk;Lee, Hyo-Jik;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2275-2278
    • /
    • 2005
  • In this paper, a control algorithm for a servo manipulator is focused on. A servo manipulator system has been developed for remotely handling radioactive materials in a hot cell. It is driven by servo motors. The torque from a servo motor is transferred through a reducer to the corresponding axis. The PID control algorithm is a simple and effective algorithm for such application. However, since friction degrades the algorithm's performance, friction has to be considered and compensated. The major aberrations are the positional tracking errors and the limit cycle. The authors have considered a switching term to a conventional PID algorithm to reduce the friction's effect. It has been tested by a hardware test.

  • PDF

A Study on Energy Saving Algorithm of Pneumatic Regulator with Modified PWM Driven Method

  • Kim, H.S.;Ahn, K.K.;Lee, B.R.;Yun, S.N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1339-1342
    • /
    • 2005
  • The development of an accurate and energy saving pneumatic regulator that may be applied to a variety of practical pressure control applications is described in this paper. A novel modified pulse width modulation(MPWM) valve pulsing algorithm allows the pneumatic regulator to become energy saving system. A comparison between the system response of conventional PWM algorithm and that of the modified PWM(MPWM) algorithm shows that the control performance is almost the same, but energy saving is greatly improved by adopting this new MPWM algorithm. The effectiveness of the proposed control algorithm is demonstrated through experiments with various reference trajectories.

  • PDF

Application of FESS Controller for Load Frequency Control

  • Lee, Jeong-Phil;Kim, Han-Guen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.361-366
    • /
    • 2013
  • This paper presents the effect on application of the flywheel energy storage system (FESS) for load frequency control (LFC) of an interconnected 2 area power system. To do this, the control characteristics with the FESS were compared with that of the conventional governor controller. The controller for the FESS control and the governor control used a PID type controller. Both the FESS PID controller and the governor PID controller using genetic algorithm (GA) were designed to optimize the PID parameters. The frequency and generation output characteristics with the only FESS controller and with the only conventional governor controller were compared. To verify robust performance of the FESS controller, the computer simulations were performed under various disturbances. The simulation results showed that the FESS controller provided better dynamic responses in comparison with the conventional governor controller.

The Novel Configuration of Integrated Network for Building Energy System (빌딩 에너지시스템 통합네트워크 구축에 관한 연구)

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.229-234
    • /
    • 2008
  • The new millennium has started with several innovations driven by fast evolution of the technologies in energy sector. A strong impulse towards the diffusion of new economical efficient technologies regulatory incentives related to energy production from renewable source and a small scale building trigeneration and to promotion of more sustainable environmental-friendly generation solutions, the evolution of electricity markets, more and more binding local emission constraints, and the need for improving the security of supply to reduce the energy system vulnerability. The 24 percentage energy quantify of total energy consumption consumes in commercial buildings and residential houses and the 30% portion of total $CO_2$ emissions covers also in the commercial buildings and residential houses sector. To cope with efficiently this energy sinuation in building sector, Building microgrid or building tooling, heating & power(BCHP) system has been interested in recent day due to meeting thermal and electric energy requirements efficiently and with appropriate energy quality. A multi agent system is a collective of intelligent agents that communicate with each other and work cooperatively to achieve common goals. Also, it is to medicate and coordinate communication between Control Areas and Security Coordinators for teal-time control of the BCHP system and the power pid. In this new circumstance, it is very important to integrate the power and energy delivery system and the information system(communication, networks, and intelligent equipment) that controls it. Therefore, development of smart control modules with open communication protocol and seamlessly interchange the data and information between control network and data network including extranet and intranet give a great meanings. We designed and developed the TCP/IP-CAN IED agent modules and ModBus./LonTalk/(TCP/IP) IED agent ones to configure the multi-agent system based smart energy network of commercial buildings and also intelligent algorithms for inverter fault diagnostics which ran be operated in control level or agent level network.

  • PDF

Force Control of 6-DOF Pneumatic Joystick

  • Tanaka, Yoshito;Hitaka, Yasunobu;Yun, So-Nam;Kim, Ji-U;Jeong, Eun-A;Park, Jung-Ho;Ham, Young-Bog
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, it is presented the development of a new type force feedback system. It is based on a 6-DOF Stewart parallel mechanism which has six pneumatic actuated cylinders. The thrust force of each cylinder is controlled by PWM control for the solenoid valve and it is actualized by PIC controller. When the pneumatic actuator is controlled, it must be considered the influence on the compressibility of air. For this problem, we guarantee the control characteristics by the effect of the accumulator. It is confirmed that the thrust force of the cylinder can be applied to the pneumatic parallel mechanism, and is presented the experimental result of force control for vertical direction.

Energy-based damage-control design of steel frames with steel slit walls

  • Ke, Ke;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1157-1176
    • /
    • 2014
  • The objective of this research is to develop a practical design and assessment approach of steel frames with steel slit walls (SSWs) that focuses on the damage-control behavior to enhance the structural resilience. The yielding sequence of SSWs and frame components is found to be a critical issue for the damage-control behavior and the design of systems. The design concept is validated by the full-scale experiments presented in this paper. Based on a modified energy-balance model, a procedure for designing and assessing the system motivated by the framework regarding the equilibrium of the energy demand and the energy capacity is proposed. The damage-control spectra constructed by strength reduction factors calculated from single-degree-of-freedom systems considering the post stiffness are addressed. A quantitative damage-control index to evaluate the system is also derived. The applicability of the proposed approach is validated by the evaluation of example structures with nonlinear dynamic analyses. The observations regarding the structural response and the prediction during selected ground motions demonstrate that the proposed approach can be applied to damage-control design and assessment of systems with satisfactory accuracy.