• Title/Summary/Keyword: Energy Conservation Technology

Search Result 313, Processing Time 0.043 seconds

Evaluation of Key Success Factors for Web Design in Taiwan's Bike Case Study

  • LAI, I-Sung;HUANG, Yung-Fu;SIANG, Jie-Hua;WENG, Ming-Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.927-937
    • /
    • 2020
  • Global warming awareness through energy conservation is growing due to the regulatory policies issued by governments and voluntary organization that established carbon emission limits. Transportation is one of the major contributors to carbon emissions. Bike will be simultaneously saving money, getting fit and helping to reduce global warming. Web design has been identified as a key factor for the acceptance and success of the websites and electronic commerce. The purpose of this research is to investigate the effective implementation of the proposed Analytic Hierarchy Process (AHP) technique on a bike case study whose company (Bike Company) is involved in web design for a critical component in the demonstration. Survey research used a variety of data collection methods, with the most common being questionnaires and interviews of some exporters. The research results reveal that the top five key success factors are Good reputation, Transaction security, Ease of use, Promotion, and Diversified choices, which provide the guidelines and directions for decision-makers to design effective websites in the current competitive business scenario. The major findings of this study are suggesting that Internet marketing channels are securing the company's relevance, together with paving the way for methods to increase web traffic.

A Study on the Utilization of potential heat sources for Heat Pumps to District Heating System in Urban (도시 내 지역난방 Heat Pump용 잠재열원 이용에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.841-855
    • /
    • 2018
  • The purpose of this study is to estimate the available potential heat source for heat pump in the district heating supply area in the city. Unused energy potentials were estimated and integrated based on open source based data. In particular, geographical spatial analysis of recoverable heat energy density and heat demand in the heat source area of large retailers and public sauna facilities in the DH network located in the southern part of the metropolitan area (Pyeongtaek-si) was conducted. As a result of the study, the DH network area had a total potential energy of 1,741.7 toe/year for the two heat sources of large retailers and public saunas. It is estimated that 1,006.9 toe/year, which is 57.8% of the total, can be linked to the district heating. The large retailers showed a positive correlation with the floor area and energy use of 0.4937. The recoverable energy intensity was estimated to be $0.0017toe/m^2$ per unit area and $0.0069tCO_2/m^2$ for greenhouse gas emissions. In addition, public saunas were analyzed by comparing the empirical case with the theoretical calculation, and it was estimated that energy conservation estimate of 80% was $0.0315toe/m^2$ per bath area and $0.1183tCO_2/m^2$ for greenhouse gas emissions. The total potential energy amount of this area was positively correlated with the heat demand of apartment house by administrative district, and it was confirmed that it had a relatively high potential energy especially in traffic and commercial center.

Distribution Correlation between Heavy Metals Contaminants and PAHs Concentrations of Soils in the Vicinity of Abandoned Mines (폐광산지역 토양에서 중금속과 PAHs 농도 분포 상관관계)

  • Ki, Seong-Kan;Park, Ha-Seung;Jo, Rae-Hyeon;Choi, Kyoung-Kyoon;Yang, Hyun;Park, Jeong-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.239-244
    • /
    • 2014
  • BACKGROUND: Heavy metals contamination of soils in the vicinity of abandoned mines in South Korea has been investigated. However, PAHs contamination rarely has been studied. Both heavy metals and PAHs concentrations have been measured in this study. METHODS AND RESULTS: The samples of soil and sediment were collected from the vicinities of three abandoned coal mines and two abandoned metal mines for analysis of heavy metals contaminants and PAHs concentration from April to September 2012. After preparation of these samples following the Korean standard test method for soils, the concentrations of heavy metals contaminants and PAHs were measured using ICP-OES and GC-MS, respectively. It was observed that the concentration of Arsenic was above the concern level based on 'area 1' suggested by Korean soil conservation law, resulting that Arsenic is the main contaminant in these areas. Also Cd, Cu, Pb and Zn were observed as a partial contaminants. The concentrations of other investigated components including benzo(a)pyrene were less than the concern level. CONCLUSION: The correlation observed between Arsenic (as main contaminant) and PAHs concentrations suggested that the contaminant source and pathway are different for each other. The effect of mine activity on PAHs concentration was rarely observed.

Characterization of High Efficient Red Phosphorescent OLEDs Fabricated on Flexible Substrates (연성기판위에 제작된 고효율 Red 인광 OLED의 특성평가)

  • Kim Sung Hyun;Lee Yoo Jin;Byun Ki Nam;Jung Sang Yun;Lee Bum Sung;Yoo Han Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-19
    • /
    • 2005
  • The organic light-emitting devices(OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100$\%$, compared to 25$\%$ in case of the fluorescent material [1]. Thus recently phosphorescent OLEDs have been extensively studied and showed higher internal quantum efficiency than conventional OLEDs. In this study, we have applied a new Ir complex as a red dopant and fabricated a red phosphorescent OLED on a flexible PC(Polycarbonate) substrate. Also, we have investigated the electrical and optical properties of the devices with a structure of A1/LiF/Alq3/(RD05 doped)BAlq/NPB/2-TNAIA/ITO/PC substrate. Our device showed the lightening efficiency of > 30 cd/A at an initial brightness of 1000 cd/$m^{2}$. The CIE(Commission Internationale de L'Eclairage) coordinates for the device were (0.62,0.37) at a current density of 1 mA/$cm^{2}$. In addition, although the sheet resistance of ITO films on PC substrate is higher than that on glass substrate, the flexible OLED showed much better lightening efficiency without much increase in operating voltage.

  • PDF

Mechanism for Energy Conservation by Adding New State to the Current LCD States of the Power Manager of Smartphones Based on Tizen (타이젠 기반 스마트폰 파워 매니저의 현재 LCD 상태에 새로운 상태 추가를 통한 에너지 절약 기법)

  • Lee, Sang-Jun;Kwon, Young-Ho;Rhee, Byung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1002-1005
    • /
    • 2015
  • Mobile operating systems have been typically classified into Apple and Android. Samsung showed its own new mobile OS developing Tizen based on Linux kernel. Mobile operating system has developed a technology using low-power by itself because of the limitation of capacity of battery, a feature of mobile. Samsung Tizen OS has a low-power technology called Power Manager controling LCD states as users'inputs or time-out events occur. However, if users'input occurs frequently, energy consumption jumped before-and-after users'input because CPU clock is increased rapidly due to overhead increase for frequent LCD state changes. This paper proposes a mechanism to reduce the overhead for LCD state changes, when user's input is frequent, by adding a new state to the Power Manager the current Tizen OS is using. We have implemented the proposed mechanism at Tizen phone kernel layer in this paper and experimented the mechanism according to users' LCD touch inputs. The experiment shows that it is possible to decrease energy by reducing the CPU clock increase according to the frequent user's inputs.

  • PDF

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

Economic Evaluation through Thermal Efficiency Elevation in Hot Air Drying Tower (열풍건조로의 열효율 향상을 위한 개선방안 연구)

  • Kim, Dong-Kyu;Kum, Jong-Soo;Kim, Jong-Ryeol;Kim, Sang-Jin;Chung, Yong-Hyun;Kim, Dong-Kyu;Kong, Ki-Bong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.500-507
    • /
    • 2008
  • Hot air drying is a method that let moistures evaporate by heat exchange between heating air and dry target. This way is dominating more than about 70% of dryers that the use extent is wide fairly, and is established in domestic than dryer that use conduction or radiation etc. Most of research about drying had been emphasized in size of device through analysis for these dry phenomenon plain, heating topology, and aspect of form and so on by dry target's special quality, and research about device development or waste heat withdrawal technology in energy utilization efficiency side is slight real condition. Therefore, in this study, Investigated numerically about thermal efficiency elevation that is leaned against as that change the temperature of inlet and outlet in heat exchanger of the hot air drying tower.

Developing Optimal Pre-Cooling Model Based on Statistical Analysis of BEMS Data in Air Handling Unit (BEMS 데이터의 통계적 분석에 기반한 공조기 최적 예냉운전 모델 개발)

  • Choi, Sun-Kyu;Kwak, Ro-Yeul;Goo, Sang-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.467-473
    • /
    • 2014
  • Since the operating conditions of HVAC systems are different from those for which they are designed, on-going commissioning is required to optimize the energy consumed and the environment in the building. This study presents a methodology to analyze operational data and its applications. A predicted operation model is to be produced through a statistical data analysis using multiple regressions in SPSS. In this model, the dependent variable is the pre-cooling time, and the independent variables include the power output of the supply air inverter during pre-cooling, the supply air set temperature during pre-cooling, the indoor temperature-indoor set temperature just before pre-cooling, supply heat capacity, and the lowest outdoor air temperature during non-cooling/non-heating hours. The correlation coefficient R2 of the multiple regression model between the pre-cooling hour and the internal/external factors is of 0.612, and this could be used to provide information related to energy conservation and operating guidance.

Non-isothermal Decomposition Kinetics of a New High-energy Organic Potassium Salt: K(DNDZ)

  • Xu, Kangzhen;Zhao, Fengqi;Song, Jirong;Ren, Xiaolei;Gao, Hongxu;Xu, Siyu;Hu, Rongzu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2259-2264
    • /
    • 2009
  • A new high-energy organic potassium salt, 2-(dinitromethylene)-1,3-diazepentane potassium salt K(DNDZ), was synthesized by reacting of 2-(dinitromethylene)-1,3-diazepentane (DNDZ) and potassium hydroxide. The thermal behavior and non-isothermal decomposition kinetics of K(DNDZ) were studied with DSC, TG/DTG methods. The kinetic equation is $\frac{d{\alpha}}{dT}$ = $\frac{10^{13.92}}{\beta}$3(1 - $\alpha$[-ln(1 - $\alpha$)]$^{\frac{2}{3}}$ exp(-1.52 ${\times}\;10^5$ / RT). The critical temperature of thermal explosion of K(DNDZ) is $208.63\;{^{\circ}C}$. The specific heat capacity of K(DNDZ) was determined with a micro-DSC method, and the molar heat capacity is 224.63 J $mol^{-1}\;K^{-1}$ at 298.15 K. Adiabatic time-to-explosion of K(DNDZ) obtained is 157.96 s.

Estimate of package crack reliabilities on the various parameters using taguchi's method (다꾸찌방법을 사용한 여러변수들이 패키지균열에 미치는 신뢰도 평가)

  • Kwon, Yong-Su;Park, Sang-Sun;Park, Jae-Wan;Chai, Young-Suck;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.951-960
    • /
    • 1997
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the maximum energy release rate criterion. It could be shown that the crack propagation from the lower edge of the ie pad is easily occurred at the maximum temperature during the soldering process, where the pressure acting on the crack surface is assumed by the saturated vapor pressure at maximum temperature. The package crack formation depends on various parameters such as chip size, relative thickness, material properties, the moisture content and soldering temperature etc. The quantitative measure of the effects of the parameters could be easily obtained by using the taguchi's method which requires only a few kinds of combinations with such parameters. From the results, it could be obtained that the more significant parameters to effect the package reliability are the orders of Young's modulus, die pad size, down set, chip thickness and maximum soldering temperature.