• Title/Summary/Keyword: Energy Capture

Search Result 562, Processing Time 0.019 seconds

Energy Calibration for Neutron Capture Resonance of Natural Sm by Using 46-MeV Electron Linear Accelerator

  • Lee, Jae-Hong;Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.2
    • /
    • pp.31-35
    • /
    • 2007
  • Energy calibration is important to identify accurate neutron capture resonance energy in the neutron TOF (Time-of-Flight) experiment. In present study, the accurate neutron capture resonance energies of natural Sm were measured by using a 46-MeV electron linear accelerator (linac) at the Research Reactor Institute, Kyoto University(KURRI). The BGO spectrometer were adopted for measurement the prompt capture gamma-ray of the sample. To obtain energy calibration curve, resonance energy of a gold sample used as standard resonance energy Mughabghab's data (From neutron resonance parameters data). Previous data (by Mughabghab) of natural Sm sample have been compared with the present result.

  • PDF

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

KEPCO-China Huaneng Post-combustion CO2 Capture Pilot Test and Cost Evaluation

  • Lee, Ji Hyun;Kwak, NoSang;Niu, Hongwei;Wang, Jinyi;Wang, Shiqing;Shang, Hang;Gao, Shiwang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.150-162
    • /
    • 2020
  • The proprietary post-combustion CO2 solvent (KoSol) developed by the Korea Electric Power Research Institute (KEPRI) was applied at the Shanghai Shidongkou CO2 Capture Pilot Plant (China Huaneng CERI, capacity: 120,000 ton CO2/yr) of the China Huaneng Group (CHNG) for performance evaluation. The key results of the pilot test and data on the South Korean/Chinese electric power market were used to calculate the predicted cost of CO2 avoided upon deployment of CO2 capture technology in commercial-scale coal-fired power plants. Sensitivity analysis was performed for the key factors. It is estimated that, in the case of South Korea, the calculated cost of CO2 avoided for an 960 MW ultra-supercritical (USC) coal-fired power plant is approximately 35~44 USD/tCO2 (excluding CO2 transportation and storage costs). Conversely, applying the same technology to a 1,000 MW USC coal-fired power plant in Shanghai, China, results in a slightly lower cost (32~42 USD/tCO2). This study confirms the importance of international cooperation that takes into consideration the geographical locations and the performance of CO2 capture technology for the involved countries in the process of advancing the economic efficiency of large-scale CCS technology aimed to reduce greenhouse gases

Neutron Cross Section Evaluation on Mo-95, Tc-99, Ru-101 and Rh-1()3 in the Fast Energy Region

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.533-544
    • /
    • 2002
  • The neutron induced nuclear data for Mo-95, Tc-99, Ru-101 and Rh-103 was calculated and evaluated in the fast energy region. The energy dependent optical model potential parameters were extracted based on the recent experimental data and applied up to 20 MeV. The s-wave strength function was calculated from the parameters. Spherical optical model, statistical model in equilibrium energy, multistep direct and multistep compound model in pre-equilibrium energy and direct capture model were used in the calculation. The theoretically calculated cross sections were compared with the experimental data and the evaluated files The model- calculated total and capture cross sections were in good agreement with the reference experimental data. The direct capture contribution improved the capture cross sections in pre- equilibrium region. The evaluated cross section results were compiled to ENDF-6 format and will improve the ENDF/B-Vl.

Process Improvement and Evaluation of 0.1 MW-scale Test Bed using Amine Solvent for Post-combustion CO2 Capture (0.1 MW급 연소후 습식아민 CO2 포집 Test Bed 공정개선효과 검증)

  • Park, Jong Min;Cho, Seong Pill;Lim, Ta Young;Lee, Young ill
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.103-108
    • /
    • 2016
  • Carbon Capture and Storage technologies are recognized as key solution to meet greenhouse gas emission standards to avoid climate change. Although MEA (monoethanolamine) is an effective amine solvent in $CO_2$ capture process, the application is limited by high energy consumption, i.e., reduction of 10% of efficiency of coal-fired power plants. Therefore the development of new solvent and improvement of $CO_2$ capture process are positively necessary. In this study, improvement of $CO_2$ capture process was investigated and applied to Test Bed for reducing energy consumption. Previously reported technologies were examined and prospective methods were determined by simulation. Among the prospective methods, four applicable methods were selected for applying to 0.1 MW Test Bed, such as change of packing material in absorption column, installing the Intercooling System to absorption column, installing Rich Amine Heater and remodeling of Amines Heat Exchanger. After the improvement construction of 0.1 MW Test Bed, the effects of each suggested method were evaluated by experimental results.

Calculation and measurement of Al prompt capture gammas above water in a pool-type reactor

  • Czakoj, Tomas;Kostal, Michal;Losa, Evzen;Matej, Zdenek;Simon, Jan;Mravec, Filip;Cvachovec, Frantisek
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3824-3832
    • /
    • 2022
  • Prompt capture gammas are an important part of the fission reactor gamma field. Because some of the structural materials after neutron capture can emit photons with high energies forming the dominant component of the gamma spectrum in the high energy region, the following study of the high energy capture gamma was carried out. High energy gamma radiation may play a major role in areas of the radiation sciences as reactor dosimetry. The HPGe measurements and calculations of the high-energy aluminum capture gamma were performed at two moderator levels in the VR-1 pool-type reactor. The result comparison for nominal levels was within two sigma uncertainties for the major 7.724 MeV peak. A larger discrepancy of 60% was found for the 7.693 MeV peak. The spectra were also measured using a stilbene detector, and a good agreement between HPGe and stilbene was observed. This confirms the validity of stilbene measurements of gamma flux. Additionally, agreement of the wide peak measurement in 7-9.2 MeV by stilbene detector shows the possibility of using the organic scintillators as an independent power monitor. This fact is valid in these reactor types because power is proportional to the thermal neutron flux, which is also proportional to the production of capture gammas forming the wide peak.

Estimation of Neutron Absorption Ratio of Energy Dependent Function for $^{157}Gd$ in Energy Region from 0.003 to 100 eV by MCNP-4B Code

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.23-25
    • /
    • 2009
  • Gd-157 material has very large neutron capture cross section in the thermal region. So it is very useful to shield material for thermal neutrons. Futhermore, in the neutron capture experiment and calculation, the neutron absorption and scattering are very important. Especially these effects are conspicuous in the resonance energy region and below the thermal energy region. In the case of very narrow resonance, the effect of scattering is to be more considerable factor. In the present study, we obtained energy dependent neutron absorption ratios of natural indium in energy region from 0.003 to 100 keV by MCNP-4B Code. The coefficients for neutron absorption was calculated for circular type and 1 mm thickness. In the lower energy region, neutron absorption is larger than higher region, because of large capture cross section (1/v). Furthermore it seems very different neutron absorption in the large resonance energy region. These results are very useful to decide the thickness of sample and shielding materials.

  • PDF

Analysis of the Influence of Post-Combustion $CO_2$ Capture on the Performance of Fossil Power Plants (후처리를 이용한 $CO_2$ 포집이 화력 발전설비 성능에 미치는 영향 해석)

  • Tak, Sang-Hyun;Kim, Tong-Seop;Chang, Young-Soo;Lee, Dae-Young;Kim, Min-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.545-552
    • /
    • 2010
  • Research and development efforts to reduce $CO_2$ emission are in progress to cope with global warming. $CO_2$ emission from fossil fuel fired power plants is a major greenhouse gas source and the post-combustion $CO_2$ capture is considered as a short or medium term option to reduce $CO_2$ emissions. In this study, the application of the post-combustion $CO_2$ capture system, which is based on chemical absorption and stripping processes, to typical fossil fuel fired power plants was investigated. A coal fired plant and a natural gas fired combined cycle plant were selected. Performance of the MEA-based $CO_2$ capture system combined with power plants was analyzed and overall plant performance including the energy consumption of the $CO_2$ capture process was investigated.

NEUTRON CROSS SECTION DATA LIBRARY FOR PD-105, AG-109, XE-131 AND CS-133

  • LEE Y. D.;CHANG J. H.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • The neutron induced nuclear cross-section data for Pd-105, Ag-109, Xe-131, and Cs-133 were calculated and evaluated from an unresolved energy to 20 MeV. The energy dependent optical model potential parameters were extracted based on recent experimental data and applied up to 20 MeV. A spherical optical model and a statistical model for the equilibrium energy, and a multistep direct and a multistep compound model for the pre-equilibrium energy were used in the calculation. The direct capture model was recently introduced for fast neutron capture. The theoretically calculated cross-sections were compared with the experimental data and the evaluated files. The total and capture cross-sections calculated using the model were in good agreement with the reference experimental data. The evaluated cross-section results were compiled in ENDF-6 format and merged with the resonance component, already adopted in the ENDF/B-VI release 8. New data library files covering from thermal to 20 MeV were created. They are at the preliminary stage of an ENDF/B- VII release.

Carbon Dioxide Separation by Direct Air Capture (직접 공기 포집에 의한 이산화탄소 포집)

  • Yeon Ki Hong
    • Journal of Institute of Convergence Technology
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 2023
  • Direct air capture (DAC) refers to the process of permanently removing CO2 from the atmosphere by capturing CO2 that has been emitted into the atmosphere from the past to the present directly from the atmosphere. DAC is a process that captures CO2 that exists at 400 ppm in the atmosphere, so it has the problem of requiring a significant amount of air and high energy compared to CO2 capture from a point source such as exhaust gas from a coal-fired power plant. In this study, we aim to introduce the performance, characteristics, and processes of absorbents that can be applied to DAC, focusing on the DAC process using absorbents developed to date, and present challenges that must be overcome in future DAC technology development.