• 제목/요약/키워드: Energy Analysis Model

검색결과 4,540건 처리시간 0.037초

Adiabatic Analysis of 1180MPa Advanced High Strength Steel by Impact Weight (충격하중에 의한 1180MPa급 초고강도강의 단열해석)

  • Kim, Kun-Woo;Lee, Jae-Wook;Yang, Min-Seok;Lee, Seong-Yeop;Kim, Da-Hye;Lee, Jae-Jin;Mun, Ji-Hoon;Park, Ji-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제21권8호
    • /
    • pp.93-98
    • /
    • 2022
  • Adiabatic blanking is a method to improve productivity through an autocatalytic cycle that occurs repeatedly through plastic deformation and thermal softening caused by impact energy. In this study, an axisymmetric analysis model comprising a punch, die, holder, and specimen was developed to confirm the temperature and deformation characteristics caused by an impact load. Through this, the impact energy, diameter of the punch, gap between the punch and die, and the effect of the fillet were analyzed. Because this process occurs in a very short time, adiabatic analysis can be performed using the explicit time-integration method. The analysis, confirmed that it is necessary to design a structure capable of increasing the local temperature and plastic deformation by controlling the impact energy, working area, gap, and the fillet.

Regional Electricity Planning Using Open Source-Based Optimization Model (오픈 소스 최적화모형을 이용한 지역단위 전력계획)

  • Chung, Yong Joo
    • The Journal of Information Systems
    • /
    • 제28권1호
    • /
    • pp.133-153
    • /
    • 2019
  • Purpose The purpose of this study is to design a regional electricity planning model rather than the existing single region ones and verify its usefulness. The regional electricity planning model is to determine both electricity distribution among regions and power plant planning at the same time satisfying regional demands and distribution networks. Design/methodology/approach This study made a regional electricity planning model by integrating power plant planning and electricity distribution among regions. The regional electricity planning model is formulated into a linear programming problem, and coded and run using the OSeMOSYS, one of open source energy systems. Findings According to the empirical analysis result, this study confirmed that the regional electricity planning model proposed in this study deducts the unfairness among regions in view of electricity and green house gas. In addition, the model is expected to be used in evaluating and developing the national policies concerning fine dust and/or green house gas.

Effect of radiation model on simulation of water vapor - hydrogen premixed flame using flamelet combustion model in OpenFOAM

  • Kim, Sangmin;Kim, Jongtae
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1321-1335
    • /
    • 2022
  • This study was conducted to investigate the effect of absorption coefficient models on the P1 radiation model for a premixed hydrogen flame containing the water vapor. A CFD combustion simulation analysis was performed using XiFoam, one of the open-source CFD solvers in OpenFOAM. The solver using the flamelet combustion model has been modified to implement radiative heat transfer. The absorption coefficient models used in this study the grey-mean model and constant model, and for comparison, case without radiation was added. This CFD simulation study consisted of benchmarking the THAI HD-15 and HD-22 experiments. The difference between the two tests is the inclusion of water vapor in the condition before ignition. In the case of the HD-22 experiment containing water vapor in the initial condition, the simulation results show that the grey-mean absorption coefficient model has a strong influence on the temperature decrease of the flame and on the change in pressure inside the vessel.

The Test for Verifying a Tip-Over Analysis of a Dry Storage Cask (건식저장용기에 대한 전복해석의 검증시험)

  • Kim Dong-Hak;Seo Ki-Seog;Lee Ju-Chan;Cho Chun-Hyung;Jang Hyun-Kee;Choi Byung-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제4권3호
    • /
    • pp.245-253
    • /
    • 2006
  • A test of the 1/3 scale model was conducted to verify the tip-over analysis of a dry. concrete storage cask under a hypothetical accident condition. The tip-over analysis was executed using the velocity at each point as the initial conditions of the model just before the impact. The initial velocity was determined from the initial angular velocity, which would make the equivalent kinetic energy to the potential energy. To confirm the structural integrity of the canister, the visual testing and the non-detective testings such as Liquid Penetrant testing and Ultrasonic Testing were conducted. The lid of a storage cask was plastically deformed near the impact point. The structural integrity of storage cask was maintained. To verify the tip-over analysis the strains and the accelerations acquired by the tip-over test were compared with those by the analyses. The results of the analysis were larger than the test results about two times.

  • PDF

Application of the HELIOS-MASTER Code System on the Criticality Analysis for the SMART-P Spent Fuel Storage (SMART연구로 사용후 연료 저장조의 임계해석에 HELIOS-MASTER계산체계의 적용)

  • Kim, Ha-Yong;Koo, Bon-Seung;Kim, Kyo-Youn;Lee, Chung-Chan;Zee, Sung-Quun
    • Journal of Radiation Protection and Research
    • /
    • 제30권2호
    • /
    • pp.61-67
    • /
    • 2005
  • The criticality analysis method using HELIOS-MASTER code system, which is the nuclear core analysis code system, was developed for the spent fuel storage of SMART-P reactor. We generated the macroscopic cross section of the geometric model with HELIOS and estimated the criticality of the 3-dimensional model with MASTER for SMART-P spent fuel storage. The validity of criticality analysis method for SMART-P spent fuel storage with the HELIOS-MASTER code system by 3-D MCNP calculation was also verified. The result of the criticality analysis with the HELIOS-MASTER code system is more conservative than that with the MCNP and the accuracy of this result is within the range of an allowable error. Because HELIOS-MASTER can perform the 3-D depletion calculation lot a spent fuel storage, it will be useful to perform the criticality analysis including a burnup credit in future.

Assessment of CUPID code used for condensation heat transfer analysis under steam-air mixture conditions

  • Ji-Hwan Hwang;Jungjin Bang;Dong-Wook Jerng
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1400-1409
    • /
    • 2023
  • In this study, three condensation models of the CUPID code, i.e., the resolved boundary layer approach (RBLA), heat and mass transfer analogy (HMTA) model, and an empirical correlation, were tested and validated against the COPAIN and CAU tests. An improvement on HMTA model was also made to use well-known heat transfer correlations and to take geometrical effect into consideration. The RBLA was a best option for simulating the COPAIN test, having mean relative error (MRE) about 0.072, followed by the modified HMTA model (MRE about 0.18). On the other hand, benchmark against CAU test (under natural convection and occurred on a slender tube) indicated that the modified HMTA model had better accuracy (MRE about 0.149) than the RBLA (MRE about 0.314). The HMTA model with wall function and the empirical correlation underestimated significantly, having MRE about 0.787 and 0.55 respectively. When using the HMTA model, consideration of geometrical effect such as tube curvature was essential; ignoring such effect leads to significant underestimation. The HMTA and the empirical correlation required significantly less computational resources than the RBLA model. Considering that the HMTA model was reasonable accurate, it may be preferable for large-scale simulations of containment.

Kinetic Studies of the Catalytic Low Rank Coal Gasification under CO2 Atmosphere (CO2분위기하에서 저급석탄 촉매가스화 반응 특성 연구)

  • Park, Chan Young;Park, Ji Yun;Lee, Si Hoon;Rhu, Ji Ho;Han, Moon Hee;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • 제50권6호
    • /
    • pp.1086-1092
    • /
    • 2012
  • In this study, kinetic studies and analysis of the produced syngas were conducted for low rank coal gasification under $CO_2$ atmosphere. 6 coals were analyzed to measure amount of sulfur and ash by proximate and ultimate analyses. And then they were analyzed to select suitable sample by using Thermogravimetric analyzer (TGA). Selected coal sample Samhwa was mixed with catalysts. Mixed samples with catalysts were used to get activation energy under $CO_2$ atmosphere by using Kissinger's method and shrinking core model (SCM). Also, analysis of produced syngas was performed by Gas Chromatography (GC). In this experiment, activation of the $K_2CO_3$ was the best performance, and result of the analysis of the syngas showed similar trend with result of the activation energy.

Experimentally validated FEA models of HF2V damage free steel connections for use in full structural analyses

  • Desombre, Jonathan;Rodgers, Geoffrey W.;MacRae, Gregory A.;Rabczuk, Timon;Dhakal, Rajesh P.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.385-399
    • /
    • 2011
  • The aim of this research is to model the behaviour of recently developed high force to volume (HF2V) passive energy dissipation devices using a simple finite element (FE) model. Thus, the end result will be suitable for use in a standard FE code to enable computationally fast and efficient analysis and design. Two models are developed. First, a detailed axial model that models an experimental setup is created to validate the approach versus experimental results. Second, a computationally and geometrically simpler equivalent rotational hinge element model is presented. Both models are created in ABAQUS, a standard nonlinear FE code. The elastic, plastic and damping properties of the elements used to model the HF2V devices are based on results from a series of quasi-static force-displacement loops and velocity based tests of these HF2V devices. Comparison of the FE model results with the experimental results from a half scale steel beam-column sub-assembly are within 10% error. The rotational model matches the output of the more complex and computationally expensive axial element model. The simpler model will allow computationally efficient non-linear analysis of large structures with many degrees of freedom, while the more complex and physically accurate axial model will allow detailed analysis of joint connection architecture. Their high correlation to experimental results helps better guarantee the fidelity of the results of such investigations.

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

CFD Analysis of Performance of KRISO Devices (K-DUCT) for Propulsion Efficiency Improvement (CFD를 이용한 KRISO 추진효율 향상 장치(K-duct)의 성능 해석)

  • Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.183-188
    • /
    • 2017
  • This paper provides numerical results for the estimation of the efficiency of KRISO energy saving devices in the design stage. A finite volume method is used to solve Reynolds averaged Navier-Stokes (RANS) equations, where the SST k-$\omega$ model is selected for turbulence closure. The propeller rotating motion is determined using a rigid body motion (RBM) scheme, which is called a sliding mesh technique. The numerical analysis focuses on predicting the power reduction by the designed KRISO devices (K-DUCT) under a self-propulsion condition. The present numerical results show good agreement with the available experimental data. Finally, it is concluded that CFD can be a useful method, along with model tests, for assessing the performance of energy saving devices for propulsion efficiency improvement.