• Title/Summary/Keyword: Energy Analysis Model

Search Result 4,503, Processing Time 0.036 seconds

Neutron Cross Section Evaluation on Dy Isotopes

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.154-164
    • /
    • 2002
  • Neutron cross section data on Dy-160, Dy-161, Dy-162, Dy-163 and Dy-164 were calculated and evaluated in the energy range of 1 keV to 20 MeV using a spherical optical model, statistical model and pre-equilibrium model. The energy dependent optical model potential parameters were obtained based on the recent experimental data. The width fluctuation correction in Hauser-Feshbach particle decay and the quantum mechanical approach in pre-equilibrium analysis were introduced and gave a better cross section calculation in EMPIRE-II. The total, elastic scattering and threshold reaction cross sections were evaluated and compared with the evaluated files. The model calculated (n, tot), (n, ${\gamma}$) and (n, p) cross sections were in good agreement with the experimental data in the measured energy range. The results will be applied to ENDF/B-VI for data improvement.

Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation (분산전원 상세모델을 적용한 DC Micro-grid의 동작특성 분석)

  • Lee, Ji-Heon;Kwon, Gi-Hyun;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2175-2184
    • /
    • 2009
  • This paper describes operational analysis results of the DC micro-grid using detailed model of distributed generation. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The operation analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by built-in model and the controller is modelled by user-defined model that is also coded with C-language. Various simulation results confirm that the DC micro-grid can operate without any problem in both the interconnected mode and the islanded mode. The operation analysis result confirms that the DC micro-grid make it feasible to provide power to the load stably. And it can be utilize to develop the actual system design and building.

A Quantitative Model of System-Man Interaction Based on Discrete Function Theory

  • Kim, Man-Cheol;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.430-449
    • /
    • 2004
  • A quantitative model for a control system that integrates human operators, systems, and their interactions is developed based on discrete functions. After identifying the major entities and the key factors that are important to each entity in the control system, a quantitative analysis to estimate the recovery failure probability from an abnormal state is performed. A numerical analysis based on assumed values of related variables shows that this model produces reasonable results. The concept of 'relative sensitivity' is introduced to identify the major factors affecting the reliability of the control system. The analysis shows that the hardware factor and the design factor of the instrumentation system have the highest relative sensitivities in this model. T도 probability of human operators performing incorrect actions, along with factors related to human operators, are also found to have high relative sensitivities. This model is applied to an analysis of the TMI-2 nuclear power plant accident and systematically explains how the accident took place.

Computable General Equilibrium Analysis of Energy Markets with Imperfect Competition and Scale Economy (불완전경쟁 및 규모의 경제가 에너지 산업에 미치는 영향)

  • Park, Chang Won;Kim, Gene Uhc
    • Environmental and Resource Economics Review
    • /
    • v.11 no.2
    • /
    • pp.291-319
    • /
    • 2002
  • This Paper investigates imperfect competition and economy of scale on Korean energy markets based on computable general equilibrium model. Some industries like energy sector have exhibited that their economies have strong economies of scale and imperfect competition. Thus these industrial organization facts should be incorporated into CGE model. In our model, non-competitive markets are adopted and compare these results with convention perfect competition model.

  • PDF

An Analysis on CO2 Emission and Cost Effects of Hydrogen Energy in Sedan Sector (수소에너지의 승용차부문 도입에 따른 CO2 배출 감축 및 비용효과 분석 연구)

  • Hong, Jong-Chul;Kang, Seung-Jin;Choi, Sang-Jin;Park, Sang-Young;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.9-21
    • /
    • 2009
  • As one of the alternative solution for energy and environmental issues such as climate change, energy security, oil price, etc., hydrogen energy has been getting so much attentions these days. This paper analyzed the $CO_2$ emission, costs, and energy consumptions when the hydrogen energy was introduced to transportation, specifically in Sedan sector using the energy system model, MARKAL. As results, 21.5% of $CO_2$ emission in 2040 could be reduced and additional 76 billion dollars will be needed in the high energy price scenario. The amount of energy saving mainly due to the replacement of existing car to hydrogen vehicle was 16% of the final energy consumption in 2040.

Suggestion of the Characteristics of Element Technology and the Standard Model through the Comparison of Domestic Zero-energy Houses (국내 에너지제로하우스 비교를 통한 요소기술 특성 및 표준 모델 제시에 관한 연구)

  • Lee, Chung-Kook;Lee, Jeong-Cheol;Kim, Sang-Su;Suh, Seung-Jik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.27-35
    • /
    • 2012
  • Five zero energy house models developed in Korea for the purpose of the energy performance were compared and analyzed in the study. The standard passive house model applying common technology and efficient energy performance elements was proposed. Standard passive house 5 models have been developed commonly aiming at 100% energy saving, applying high-performance and high-efficiency exterior thermal insulation, using 3 low-e coated window system, and targeting average 0.65 ACH to enhance privacy. Energy recovery ventilators and dry and cold radiant heating floor has been partially applied. Eco-design techniques such as the awning device, heat insulating door, using natural light have been used. Solar and geothermal systems as the application of renewable energy technologies have been commonly applied. And fuel cells were applied to a partial model. The standard model based on common technical elements and average performance of each element and obtained from five model analysis has been proposed in the study.

The Economic Evaluation of the Renewable Energy Projects using the Geske Model (게스케(Geske) 모델을 이용한 신재생에너지사업의 경제성 분석)

  • Jaehun Sim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.31-41
    • /
    • 2022
  • As the environmental impacts of fossil fuel energy sources increase, the South Korean government has tried to change non-environmental-friendly enery sources to environmental-friendly energy sources in order to mitigate environmental effects, which lead to global warming and air pollution. With both a limited budget and limited time, it is essential to accurately evaluate the economic and environmental effects of renewable energy projects for the efficient and effective operation of renewable energy plants. Although the traditional economic evaluation methods are not ideal for evaluating the economic impacts of renewable energy projects, they can still be used for this purpose. Renewable energy projects involve many risks due to various uncertainties. For this reason, this study utilizes a real option method, the Geske compound model, to evaluate the renewable energy projects on Jeju Island in terms of economic and environmental values. This study has developed an economic evaluation model based on the Geske compound model to investigate the influences of flexibility and uncertainty factors on the evaluation process. This study further conducts a sensitivity analysis to examine how two uncertainty factors (namely, investment cost and wind energy production) influence the economic and environmental value of renewable energy projects.

Analysis of Energy Conversion Efficiency in Micro Power Generation using Vibrating Piezoelectric Cantilever (압전빔의 진동을 이용한 마이크로 동력원의 에너지 변환 해석)

  • Lee, Heon-Ju;Chang, Young-Soo;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3365-3370
    • /
    • 2007
  • We developed micro power generation system using piezoelectric materials. In our system, the ambient vibrating energy is converting to electric energy by deflection of piezoelectric beams. The system consists of energy generating parts, converting enhancement parts, electric regulation and charging parts, and interface with small-energy-consuming mobile devices. The geometry of piezoelectric beams, the source of vibrating energy, and the electric load of target application determine the characteristics of generating electric power, such as impedance, voltage, current and power density. Therefore, we made a model for analysis of generating power with given information such as piezoelectric materials, geometry, vibration type, and mass. With this model, we can calculate capacitance of piezoelectric beams, generating voltage, current, and power. To obtain maximum energy transfer efficiency, we approached this study in the view of material, electrical, and mechanical engineering

  • PDF

Design and analysis of vibration micro piezoelectric energy harvesting for wireless sensor nodes (무선 센서 노드용 진동형 마이크로 압전 에너지 하베스팅 설계 및 분석)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.277-277
    • /
    • 2009
  • In this paper, PMPG (Piezoelectric Micro Power Generator) was investigated by ANSYS FEA (Finite Element Analysis) to decrease operating frequency and improve out power. The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Used the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Also, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and confirmed the possibility of ZnO micro power generator for wireless sensor node applications.

  • PDF

Application of a 3-D crack analysis model to RC cantilever decks of excessive cracking

  • Shi, Zihai;Nakano, Masaaki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.377-396
    • /
    • 2001
  • The excessive cracking of RC cantilever decks, which often requires special attention for structural engineers, is studied using a three-dimensional crack analysis model. The model is based on a fracture energy approach for analyzing cracks in concrete, and the numerical analysis is carried out using a modified load control method. The problem of excessive cracking is then studied with four different span-ratios. Based on the numerical results, the crack behavior with respect to the patterns of crack propagation, dissipation of the fracture energy, and effects on the structural integrity are discussed. The mechanisms which cause the excessive cracking are also explained.