• Title/Summary/Keyword: Energy & fuel technology

Search Result 2,769, Processing Time 0.024 seconds

Status and Perspective of Biomass Co-firing to Pulverized Coal Power Plants (미분탄 석탄화력발전에서의 바이오매스 혼소 동향 및 전망)

  • Yang, Won
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.525-529
    • /
    • 2016
  • Biomass co-firing to existing thermal power plants is one of the most economical and efficient way to reduce $CO_2$ emission from the plant. There are several methods of co-firing and it can be categorized into (1) Parallel co-firing, (2) Indirect co-firing, and (3) Direct co-firing. Parallel co-firing is the most expensive way to high-ratio co-firing because it requires biomass dedicated boiler. Direct co-firing is widely used because it does not need high capital cost compared with the other two methods. Regarding the direct co-firing, it can be classified into three methods- Method 1 does not need retrofit of the facilities because it uses existing coal mills for pulverizing biomass fuels. In this case high-ratio co-firing cannot be achieved because of poor grindability of biomass fuels. Method 2 needs biomass-dedicated mills and revision of fuel streams for the combustion system, and Method 3 needs additional retrofit of the boiler as well as biomass mills. It can achieve highest share of the biomass co-firing compared with other two methods. In Korea, many coal power plants have been adopting Method 1 for coping with RPS(Renewable portfolio standards). Higher co-firing ratio (> 5% thermal share) has not been considered in Korean power plants due to policy of limitation in biomass co-firing for securing REC(Renewable Energy Certificate). On the other hand, higher-share co-firing of biomass is widely used in Europe and US using biomass dedicated mills, following their policy to enhance utilization of renewable energy in those countries. Technical problems which can be caused by increasing share of the biomass in coal power plants are summarized and discussed in this report. $CO_2$ abatement will become more and more critical issues for coal power plants since Paris agreement(2015) and demand of higher share of biomass in the coal power plants will be rapidly increased in Korea as well. Torrefaction of the biomass can be one of the best options because torrefied biomass has higher heating value and grindability than other biomass fuels. Perspective of the biomass torrefaction for co-firing is discussed, and economic feasibility of biomass torrefaction will be crucial for implementation of this technology.

Building Transparency on the Total System Performance Assessment of Radioactive Repository through the Development of the Cyber R&D Platform; Application for Development of Scenario and Input of TSPA Data through QA Procedures (Cyber R&D Platform개발을 통한 방사성폐기물 처분종합성능평가(TSPA) 투명성 증진에 관한 연구; 시나리오 도출 과정과 TSPA 데이터 입력에서의 품질보증 적용 사례)

  • Seo, Eun-Jin;Hwang, Yong-Soo;Kang, Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.65-75
    • /
    • 2006
  • Transparency on the Total System Performance Assessment (TSPA) is the key issue to enhance the public acceptance for a radioactive repository. To approve it, all performances on TSPA through Quality Assurance is necessary. The integrated Cyber R&D Platform is developed by KAERI using the T2R3 principles applicable for five major steps : planning, research work, documentation, and internal & external audits in R&D's. The proposed system is implemented in the web-based system so that all participants in TSPA are able to access the system. It is composed of three sub-systems; FEAS (FEp to Assessment through Scenario development) showing systematic approach from the FEPs to Assessment methods flow chart, PAID (Performance Assessment Input Databases) being designed to easily search and review field data for TSPA and QA system containing the administrative system for QA on five key steps in R&D's in addition to approval and disapproval processes, corrective actions, and permanent record keeping. All information being recorded in QA system through T2R3 principles is integrated into Cyber R&D Platform so that every data in the system can be checked whenever necessary. Throughout the next phase R&D, Cyber R&D Platform will be connected with the assessment tool for TSPA so that it will be expected to search the whole information in one unified system.

  • PDF

A Study on the Constructing Discrete Fracture Network in Fractured-Porous Medium with Rectangular Grid (사각 격자를 이용한 단열-다공암반내 분리 단열망 구축기법에 대한 연구)

  • Han, Ji-Woong;Hwang, Yong-Soo;Kang, Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • For the accurate safety assessment of potential radioactive waste disposal site which is located in the crystalline rock it is important to simulate the mass transportation through engineered and natural barrier system precisely, characterized by porous and fractured media respectively. In this work the methods to construct discrete fracture network for the analysis of flow and mass transport through fractured-porous medium are described. The probability density function is adopted in generating fracture properties for the realistic representation of real fractured rock. In order to investigate the intersection between a porous and a fractured medium described by a 2 dimensional rectangular and a cuboid grid respectively, an additional imaginary fracture is adopted at the face of a porous medium intersected by a fracture. In order to construct large scale flow paths an effective method to find interconnected fractures and algorithms of swift detecting connectivities between fractures or porous medium and fractures are proposed. These methods are expected to contribute to the development of numerical program for the simulation of radioactive nuclide transport through fractured-porous medium from radioactive waste disposal site.

  • PDF

An Analysis of the Water Saturation Processes in the Engineered Barrier of a High Level Radioactive Waste Disposal System (고준위폐기물처분시스템 공학적 방벽에서의 지하수 포화공정 해석)

  • Park, Jeong-Hwa;Lee, Jae-Owan;Kwon, Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • An engineering scale test, which is called KENTEX, was carried out to understand and to analyze the coupled thermal, hydrological and mechanical phenomena in the engineered barrier system(EBS) of Korean reference disposal system. Using the experimental data obtained from KENTEX, the water saturation processes in bentonite could be analyzed. From the comparison between the model calculation using ABAQUS and the experimental results, the difference of the water content between them in the unsaturating part was large because the drying phenomena due to moisture redistribution by the temperature gradient could not be included in the model. In the saturating part, the difference of the water content between them was decreased gradually and showed to be small in the full saturation. And the time of about 95% saturation could be estimated about 500 days from the model calculation and experimental results. Also it could be known that the moisture redistribution in the unsaturated part could not be affected on the saturation time of bentonite in the repository. Therefore, it is considered that this model could be used to quantitatively predict the water saturation time in bentonite as EBS for the disposal system.

The Removal of NOx by Mediated Electrochemical Oxidation Using Ag(II) As a Mediator (Ag(II)를 매개체로 사용하는 전기화학적 매개산화에 의한 NOx 제거)

  • Lee, Min-Woo;Park, So-Jin;Lee, Kune-Woo;Choi, Wang-Kyu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • The effects of the applied current density, the $AgNO_3$ concentration, the scrubbing liquid flow rate and the NO-air mixed gas flow rate on the NO removal efficiency were investigated by using $Ag^{2+}$ mediated electrochemical oxidation (MEO). Results showed that the NO removal efficiency increased with increasing the applied current density. The effect of the $AgNO_3$ concentration on the NO removal efficiency was negligibly small in the concentration of $AgNO_3$ above 0.1 M. When the scrubbing liquid flow rate increased, the NO removal efficiency was gradually increased. On the other hands, the NO removal efficiency decreased with increasing the NO-air mixed gas flow rate. As a result of the treatment of NO-air mixed gas by using the MEO process with the optimum operating condition and the chemical absorption process using 3 M $HNO_3$ solution as a scrubbing liquid, the removal efficiency of NO and $NO_x$ was achieved as 95% and 63%, respectively.

The Direct Dissolution of Ion-Exchange Resin by Fenton's Reagent (펜톤시약을 이용한 이온교환수지의 직접분해)

  • Kim, Kil-Jeong;Shon, Jong-Sik;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.85-90
    • /
    • 2007
  • Fenton's Reagent is applied to directly dissolve the cation-exchange resin, IRN-77. The characteristics of the experimental procedure is to dry the resin first and $FeSO_4$ solution is completely absorbed into the resin, and then $H_2O_2$ is introduced later for an effective reaction between the reagents within the resin. An a characteristic of the dissolution, the lag time is needed for about 1 hour until the main reaction is occurred, which was more affected with the less concentration of $FeSO_4$ and the less initial dose of $H_2O_2$. The dose of $H_2O_2$ was equally divided into the early stage and the later stage after the initial reaction to provide an effective and safe reaction condition. The optimum conditions is appeared that the concentration of $FeSO_4$ is 0.9M and the dose of 15% $H_2O_2$ solution is 6-7 volume for the dissolution of unit weight of IRN-77. The effect of the heating on the lag time was checked and the time could be reduced within 5 minutes at $50^{\circ}C$, which is a relatively low temperature. The large amount of the resin, 5g and 10g, was also completely decomposed by increasing the dose of $H_2O_2$ to 9-10 volume ratio.

  • PDF

The Direct Decomposition of Ion-Exchange Resins by Fenton's Reagent (펜톤시약에 의한 이온교환수지의 직접산화분해)

  • Kim, Kil-Jeong;Shon, Jong-Sik;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.221-227
    • /
    • 2007
  • Fenton's reagent is applied to directly decompose the ion-exchange resins, IRN-78 and the mixed resin with IRN-77. The newly applied procedures is to dry the resin first and the catalyst solution is completely absorbed into the resin, then a limited dose of $H_2O_2$ is introduced for an effective reaction between the reagents within the resin. As a characteristic on the decomposition of IRN-78, the resin mixture should be heated to $40^{\circ}C$ to induce the initial reaction and lag time is also needed for about 20 minutes until the main reaction occurs. The effectiveness of the decomposition is investigated using $CuSO_4,\;Cu(NO_3)_2\;and\;FeSO_4$ as a catalyst and the decomposition rate is compared depending on the concentration of each catalyst and the amount of $H_2O_2$. The most effective catalyst was found to be $FeSO_4$ for IRN-78 alone and the mixed resin with IRN-77, and $FeSO_4$ showed a special effect that the reaction was initiated without heating and a lag time. Furthermore, the optimum concentration of the catalyst for each resin and the mixed one is suggested in the view point of the amount of $H_2O_2$ needed and the stability of the decomposition reaction.

  • PDF

Increasing of Thermal Conductivity from Mixing of Additive on a Domestic Compacted Bentonite Buffer (국산 압축벤토나이트 완충재의 첨가제 혼합을 통한 열전도도 향상)

  • Lee, Jong-Pyo;Choi, Heui-Joo;Choi, Jong-Won;Lee, Minsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2013
  • The Geyoungju Ca-bentonite with dry density of 1.6 g/$cm^3$ has been considered as a standard buffer material for the disposal of high level waste in KAERI disposal system design. But it had relatively lower thermal conductivity compared with other surrounding materials, that was one of key parameters to limit the increase of the disposal density in the disposal system. In this study, various additives were selected and mixed with the Ca-bentonite in different mixing methods in order to increase the thermal conductivity from 0.8 W/mK to 1.0 W/mK. As an additive, CNT (Cabon Nano Tube), graphite, alumina, CuO, and $Fe_2O_3$ were selected, which are chemically stable and have good thermal conductivity. As mixing methods, dry hand-mixer mixing, wet milling and dry ball mill mixing were applied for the mixing. Above all, the ball mill mixing was proved to be most effective since the produced mixture was most homogeneous and showed higher increase in the thermal conductivity. From this study, it was confirmed that the thermal conductivity for the Geyoungju Ca-bentonite could be improved by adding small amount of highly thermal conductive material to 1.0 W/mk. In conclusion, it was believed that the experimental results will be valuable in the disposal system design if the additive effects on the swelling and permeability on the compact bentonite are also approved in further studies.

Development of Sorption Database (KAERI-SDB) for the Safety Assessment of Radioactive Waste Disposal (방사성폐기물 처분안전성 평가 자료 제공을 위한 핵종 수착 데이터베이스(KAERI-SDB) 개발)

  • Lee, Jae-Kwang;Baik, Min-Hoon;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • Radionuclide sorption data is necessary for the safety assessment of radioactive waste disposal. However the use of sorption database is often limited due to the accessability. A web-based sorption database program named KAERI-SDB has been developed to provide information on the sorption of radionuclides onto geological media as a function of geochemical conditions. The development of KAERI-SDB was achieved by improving the performance of pre-existing sorption database program (SDB-21C) developed in 1998 and considering user's requirements. KAERI-SDB is designed that users can access it by using a web browser. Main functions of KAERI-SDB include (1) log-in/member join, (2) search and store of sorption data, and (3) chart expression of search results. It is expected that KAERI-SDB could be widely utilized in the safety assessment of radioactive waste disposal by enhancing the accessibility to users who wants to use sorption data. Moreover, KAERI-SDB opened to public would also improve the reliability and public acceptance on the radioactive waste disposal programs.

Efficiency Calibration of HPGe Detector in Normal ana Coincidence Mode for the Determination of Prompt Gamma-ray (즉발감마선 측정을 위한 HPGe 검출기의 전계수 또는 동시계수모드에서의 광대역 계측효율 보정)

  • 송병철;박용준;지광용
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • Neutron induced prompt gamma-ray spectroscopy(NIPS) system measures the prompt gamma-ray emitting by the interaction of a neutron with various materials. This system will be of great benefit to scientists worldwide, since it provides the non-destructive measurement of many element in either solid or liquid wastes. In this study, the full-energy-peak (FEP) efficiency calibration for a HPGe detector was constructed in the ${\gamma}$-ray energy range from 80 keV to 8 MeV, using $^{l33}$Ba and >TEX>$^{152}Eu$ RI sources and $ ^{35}Cl(n, ${\gamma}$)^{36}Cl$ thermal neutron captured reaction. The FEP efficiency curve for the higher energies using the $^{35}Cl(n, ${\gamma}$)^{36}Cl$ reaction was normalized with the curve obtained from the RI sources, since the accurate activity of its prompt ${\gamma}$-ray is unknown. The average thermal neutron flux was theoretically calculated using the FEP efficiency curve for the KCl standard solutions. The NIPS system equipped with a ${\gamma}$-${\gamma}$ coincidence setup with two n-type coaxial HPGe detectors was considered in order to reduce the interfering ${\gamma}$-ray background. The FEP efficiency curve for the ${\gamma}$-${\gamma}$ coincidence system was also obtained for full energy range. The performance of the normal and coincidence NIPS system was tested by comparing signal-to-noise ratio in each mode using the reference sample.e.

  • PDF