• 제목/요약/키워드: Energy/Power Density

검색결과 1,280건 처리시간 0.034초

A Hybrid Energy Storage System Using a Superconducting Magnet and a Secondary Battery

  • ISE Toshifumi;YOSHIDA Takeshi;KUMAGAI Sadatoshi
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.534-538
    • /
    • 2001
  • Energy storage devices with high energy density as well as high power density are expected to be developed from the point of view of compensation of fluctuating load and generated power by distributed generations such as wind turbines, photovoltaic cells and so on. SMES (Superconducting Magnetic Energy Storage) has higher power density than other energy storage methods, and secondary batteries have higher energy density than SMES. The hybrid energy storage device using SMES and secondary batteries is proposed as the energy storage method with higher power and energy density, the sharing method of power reference value for each storage device, simulation and experimental results are presented.

  • PDF

파력발전 적지 선정을 위한 제주 해역 파랑에너지 분포특성 연구 (Wave Energy Distribution at Jeju Sea and Investigation of Optimal Sites for Wave Power Generation)

  • 홍기용;류황진;신승호;홍석원
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.8-15
    • /
    • 2004
  • Wave power distribution is investigated to determine the optimal sites for wave power generation at Jeju sea which has the highest wave energy density in the Korean coastal waters. The spatial and seasonal variation of wave power per unit length is calculated in the Jeju sea area based on the monthly mean wave data from 1979 to 2002 which is produced by the SWAN wave model simulation in prior research. The selected favorable locations for wave power generation are compared in terms of magnitude of wave energy density and distribution characteristics of wave parameters. The results suggest that Chagui-Do is the most optimal site for wave power generation in the Jeju sea. The seasonal distribution of wave energy density reveals that the highest wave energy density occurs in the northwest sea in the winter and it is dominated by wind waves, while the second highest one happens at south sea in the summer and it is dominated by a swell sea. The annual average of wave energy density shows that it gradually increases from east to west of the Jeju sea. At Chagui-Do, the energy density of the sea swell sea is relatively uniform while the energy density of the wind waves is variable and strong in the winter.

펄스파워용 고전압 고에너지밀도 커패시터 개발 (Development of High Voltage and High Energy Density Capacitor for Pulsed Power Application)

  • 이병윤;정진교;이우영;박경엽;이수휘;김영광
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권5호
    • /
    • pp.203-210
    • /
    • 2003
  • This paper describes high voltage and high energy density capacitor developed for pulsed power applications. The rated voltage of the developed capacitor is DC 22 [kV], the capacitance is 206 [$\mu$F] and the energy density is about 0.7 [kJ/kg]. Polypropylene film and kraft paper were used as the dielectrics. The ratio of the thickness of each dielectric material which consists of the composite dielectric structure, stacking factor and the termination method were determined by the charging and discharging tests on model capacitors. In terms of energy density, the developed capacitor has higher energy density compared with the products of foreign leading companies. In addition, it has been proved that the life expectancy can be more over 2000 shots through the charging and discharging test. The voltage reversal factor was 20%. This capacitor can be used as numerous discharge applications such as military, medical, industrial fields.

다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구 (A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle)

  • 안상준;김태진;이교일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

Low Cost High Power Density Photovoltaic Power Conditioning System with an Energy Storage System

  • Jang, Du-Hee;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.487-494
    • /
    • 2012
  • A new low cost high power density photovoltaic power conditioning system (PV PCS) with an energy storage system is proposed in this paper. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and the battery charger/discharger. Despite the reduced power stage, the proposed system can achieve the same performance in terms of maximum power point tracking and battery charging/discharging as the conventional system. When a utility power failure happens, the proposed system cannot perform maximum power point tracking at the UPS mode. However, the predetermined battery voltage near the maximum power point of the PV array can effectively generate a reasonable PV power even at the UPS mode. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, a theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

대학교 캠퍼스 소형풍력발전기 설치 및 발전량 예측에 관한 연구 (The Prediction of the location and electric Power for Small Wind Powers in the H University Campus)

  • 조관행;윤재옥
    • KIEAE Journal
    • /
    • 제12권1호
    • /
    • pp.127-132
    • /
    • 2012
  • The energy consumption in the world is growing rapidly. And the environmental issues of climate become a important task. The interest in renewable energy like wind and solar is increasing now. Especially, by reducing power transmission loss, a small wind power is getting attention at the residential areas and campus of university. In this study, we attempted to estimate and compare the wind energy density using wind data of AWS (Automatic Weather Station) of H University. In this case of a campus, the weibull distribution parameter C is 2.27, and K is 0.88. According to the data, the energy density of the small wind power is 12.7 W/m2. We did CFD(Computational Fluid Dynamics) simulations at H University campus by 7 wind directions(ENE, ESE, SE, NW, WNW, W, WSW). In the results, we suggest 4 small wind powers. The small wind power generating system can produce 4,514kWh annually.

고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구 (A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1998년도 학술발표회논문집
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

상온 분사 공정을 이용하여 제조한 고에너지 밀도 세라믹 유전체 커패시터 (High Energy Density Dielectric Ceramics Capacitors by Aerosol Deposition)

  • 송현석;이건;예지원;정지윤;정대용;류정호
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.119-132
    • /
    • 2024
  • Dielectric ceramic capacitors present high output power density due to the fast energy charge and discharge nature of dielectric polarization. By forming dense ceramic films with nano-grains through the Aerosol Deposition (AD) process, dielectric ceramic capacitors can have high dielectric breakdown strength, high energy storage density, and leading to high power density. Dielectric capacitors fabricated by AD process are expected to meet the increasing demand in applications that require not only high energy density but also high power output in a short time. This article reviews the recent progress on the dielectric ceramic capacitors with improved energy storage properties through AD process, including energy storage capacitors based on both leadbased and lead-free dielectric ceramics.

PRO 분리막 및 모듈성능에 지지체가 미치는 영향 (The effect of backing layer for pro membranes and modules)

  • 한만재;전은주;심연주;이종화
    • 상하수도학회지
    • /
    • 제30권5호
    • /
    • pp.553-559
    • /
    • 2016
  • There has been increasing global interest in the environmental pollution problems produced by fossil fuel consumption and greenhouse gas emissions. In order to tackle these issues, new renewable energy such as solar, wind, bio gas, fuel cell and pressure retarded osmosis(PRO) have been developed extensively. Among these energy sources, PRO is one of the salinity gradient power generation methods. In PRO, energy is obtained by the osmotic pressure generated from the concentration difference between high and low concentration solutions separated by a semipermeable membrane. The development for high power density PRO membranes is imperative with the purpose of commercialization. This study investigates development of thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on power density was identified, and the characteristic factors of PRO membranes was determined. Different backing layers were used to improve power density. As expected, the PRO membrane with more porous backing layer showed higher power density.

Flexible device 상용화를 위한 flexible supercapacitor 연구

  • 강승원;배준호;이철승
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.422.2-422.2
    • /
    • 2016
  • 스마트폰, 태블릿 등의 디바이스의 발전에 따라 휴대성이 매우 중요해졌다. 디바이스의 크기, 두께, 유연성에 관한 연구가 활발히 진행되고 있으며, 그 중에서도 energy storage device의 flexibility를 향상시키는 연구가 주목 받고 있다. Energy storage device의 성능 향상을 위해서는 power density를 높여야 하며 flexibility를 위해서는 전극판과 전극소재 간의 부착력을 증가시켜야 한다. 본 연구에서는, power density와 소재 간의 부착성을 개선시키기 위해 기존 graphene보다 표면적이 넓으며 power density가 좋고 전극판과의 부착성이 좋은 hybrid GNP-CNT를 사용하였다. 그리고 Ag NWs/CNT PET film 을 사용하여 전도성이 있는 flexible한 전극판을 사용하였다. SEM 측정을 통해 표면 분석을 하였고, sample에 패턴을 하고 Bending test를 하여 부착성을 확인하였다. 또한, CV curve를 측정하여 supercapacitor의 특성을 확인하였다. 향후, $MnO_2$ NWs를 hybrid GNP-CNT에 합성시킴으로 energy storage device의 energy density를 더욱 향상시키는 연구를 진행할 것이다.

  • PDF