• Title/Summary/Keyword: Endothermic reaction

Search Result 195, Processing Time 0.024 seconds

Analysis of Catalytic Cracking and Steam Reforming Technologies for Improving Endothermic Reaction Performance of Hydrocarbon Aviation Fuels (탄화수소 항공유의 흡열반응 성능향상을 위한 촉매 분해 및 수증기 개질 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.98-109
    • /
    • 2021
  • Fundamental parameters describing overall operational characteristics of active cooling systems of a hypersonic flight vehicle are mainly classified into endothermic hydrocarbon fuels, regenerative cooling channels, and materials and system structures. Of primary importance is the improvement of endothermic performance of hydrocarbon aviation fuels in a series of studies developing efficient regenerative cooling systems. In a previous study, therefore, an extensive technical analysis has been carried out on thermal decomposition characteristics of liquid hydrocarbon fuels. As a subsequent study, catalytic cracking and steam reforming technologies have been reviewed to find a way for the improvement of endothermic reaction performance of hydrocarbon aviation fuels.

Analysis of Endothermic Regenerative Cooling Technologies by Using Hydrocarbon Aviation Fuels (탄화수소 항공유를 이용한 흡열재생냉각 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.113-126
    • /
    • 2021
  • In order to develop active cooling systems for a hypersonic cruise vehicle, a series of studies need to be preceded on regenerative cooling technologies by using endothermic reaction of liquid hydrocarbon aviation fuels. Among them, it is essential to scrutinize fluid flow/heat transfer/endothermic pyrolysis characteristics of supercritical hydrocarbons in a micro-channel, as well as to acquire thermophysical properties of hydrocarbon fuels in a wide range of temperature and pressure conditions. This study, therefore, reviewed those technologies and analyzed major findings in related research areas which have been carried out worldwide for the development of efficient operational regenerative cooling systems of a hypersonic flight vehicle.

Thermal Behavior of Dickite (딕카이트의 열적 특성 연구)

  • 조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 1999
  • Thermal behavior of dickite was studied by thermal analysis, X-ray diffraction analysis, electron microprobe analysis, and scanning electron microscopy, Dickite has an endothermic peak at about$ 650^{\circ}C$ and an exothermic one at $960^{\circ}C$ in the differential thermal analysis. The endothermic reaction is assigned to the decomposition of dickite to meta-dickite. Hydroxyl radicals are removed from dickite structure by the reaction, resulting in the weight loss about 10.5~14.5% and appearance of a 14$\AA$ phase different from other kaolin minerals. The reaction slowly proceed in the range of $200^{\circ}C$. As the completion of decomposition, aciclular mullite forms at the expense of meta-dickite plates with random crystallographic relationship. Mullites have diverse silica versus alumina ratio. The exothermic reaction without weight loss seems to be due to the formation of spinel and amorphous silica. The spinel phase shows cryptocrystalline globular morphology accompanying a little amount of silica. From spinel phase shows cryptocrystalling globular morphology accompanying a little amount of silica. From this work, it is suggested that mullite is formed from meta-dickite much lower temperature than the reported one in the previous works.

  • PDF

A Study on the Deintercalation Reaction of Li-Graphite Intercalation Compounds

  • O, Won Cheon;Kim, Beom Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.101-104
    • /
    • 2000
  • Li-graphite intercalation compounds (GICs), synthesized at elevated temperature and pressure, were allowed to decompose spontaneously in the atmosphere. The decomposition processes were analyzed by of X-ray diffraction, DSC analysis, FT-IR measurements, UV/VIS spectrophotometry. The deintercalation reaction of the Li-GICs ceased after 6 weeks and only the residual compounds could be observed. A strong exothermic reaction was observed at 300 $^{\circ}C$ in thermal decomposition, and relatively stable decomposition curves were formed. A few endothermic curves have been observed at 1000 $^{\circ}C.$ After 6 weeks deintercalation reaction time of GICs, many exothermic and endothermic reactions were accompanied at the same time. In addition the reactions of the functional groups such as aromatic rings, nitrogen, $-CH_3$, $-CH_2$ etc. of GDIC obtained by the above reaction were confirmed by FT-IR spectrum. UV/VIS spectrophotometric measurement clearly shows the formation of a minimum energy value ($R_{min}$) for the compounds between Li-GICs as a starting material and Li-GDICs obtained until after 3 weeks of the deintercalation reaction, while they were no clear energy curves from 4 weeks of reaction time, because of the formation of the graphite structure, of high stages and of the Li compounds surrounding the graphite in the deintercalation reaction.

DFT Study on the Different Oligomers of Glycerol (n=1-4) in Gas and Aqueous Phases

  • Valadbeigi, Younes;Farrokhpour, Hossein
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.684-690
    • /
    • 2013
  • Since a glycerol molecule has three active sites, two ${\alpha}$ and one ${\beta}$ hydroxyl groups; it undergoes condensation by releasing water molecules to produce linear, nonlinear and heterocyclic oligomers. The Gibbs free energy (G), enthalpy (H) and internal energy (E) of 7 diglycerol, 15 triglycerol and 23 tetraglycerol isomers were calculated at B3LYP level of theory using 6-311++G(d, p) basis set, in both gas and aqueous phases. Linear oligomers, ${\alpha}{\alpha}$-diglycerol, ${\alpha}{\alpha}$, ${\alpha}{\alpha}$-triglycerol and ${\alpha}{\alpha}$, ${\alpha}{\alpha}$, ${\alpha}{\alpha}$-tetraglycerol, were found to be the most stable oligomers in aqueous phase. It was found that the stability of cyclic oligomers decreases as the size of their rings increases. Cyclic oligomers are produced by dehydration of the acyclic ones which is an endothermic reaction while its ${\Delta}G$ is negative. The dehydration reaction is less endothermic in aqueous phase.

Research Activities about Characteristics of Fuel Injection and Combustion Using Endothermic Fuel (흡열연료를 이용한 연료분사 및 연소 특성 연구동향)

  • Choi, Hojin;Lee, Hyungju;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • Endothermic fuel utilizing technology is considered as a unique practical method of hypersonic vehicle for long distance flight. Research activities about characteristics of fuel injection and combustion using cracked by endothermic reaction are reviewed. Studies on characterization of supercritical fuel injection and mixing within supersonic flow field are surveyed. Researches on combustion characteristics such as ignition delay time, laminar burning velocity and combustion efficiency at supersonic model combustor are reviewed. In addition, domestic research activities on endothermic fuel are surveyed.

Study on the Deactivation Trends of Liquid Fuel According to the Types of Endothermic Catalyst in Flow Reactor (흐름형 반응기 내에서 액체연료의 흡열반응촉매 종류에 따른 비활성화 정도에 대한 연구)

  • Lee, Tae Ho;Jeon, Sunbin;Kim, Sung Hyun;Jeong, Byung Hun;Han, Jeong Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.81-87
    • /
    • 2018
  • In hypersonic aircraft, increase of aerodynamic and engine heat lead thermal load in airframe. It could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which absorb the heat load by undergoing endothermic reactions. In this study, we investigated the relationship between product, coke formation and catalytic properites of endothermic catalysts by using exo-tetrahydrodicyclopentadiene as a fuel in a fixed bed flow reactor similar to the actual reaction conditions.

Heat Sink Measurement of Liquid Fuel for High Speed Aircraft Cooling (고속 비행체 냉각을 위해 사용되는 액체연료의 흡열량 측정연구)

  • Kim, Joongyeon;Park, Sun Hee;Hyeon, Dong Hun;Chun, Byung-Hee;Kim, Sung Hyun;Jeong, Byung-Hun;Han, Jeong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.10-15
    • /
    • 2014
  • For hypersonic aircraft, increase of flight speeds causes heat loads that are from aerodynamic heat and engine heat. The heat loads could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which are able to absorb the heat loads by undergoing endothermic reactions, such as thermal and catalytic cracking. In this study, methylcyclohexane was selected as a model endothermic fuel and experiments on endothermic properties were implemented. To improve heat of endothermic reaction, we applied zeolites and confirmed that HZSM-5 was the best catalyst for the catalytic performance. The objective is to investigate catalytic effects for heat sink improvement. The catalyst could be applied to system that use kerosene fuel as endothermic fuel.

Improvement of Heat of Reaction of Jet Fuel Using Pore Structure Controlled Zeolite Catalyst (제올라이트계 촉매의 기공구조 조절을 통한 항공유의 흡열량 향상 연구)

  • Hyeon, Dong Hun;Kim, Joongyeon;Chun, Byung-Hee;Kim, Sung Hyun;Jeong, Byung-Hun;Han, Jeong Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.95-100
    • /
    • 2014
  • In hypersonic aircraft, increase of aerodynamic heat and engine heat leads heat loads in airframe. It could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which are able to absorb the heat load by undergoing endothermic reactions. In this study, exo-tetrahydrodicyclopentadiene was selected as a model endothermic fuel and experiments on endothermic properties were investigated with pore structure controlled zeolite catalyst using metal deposition. We secured the catalyst that had better endothermic performance than commercial catalyst. The object of this study is inspect catalyst properties which have effect on heat absorption improvement. Synthetic catalyst could be applied to system that use exo-THDCP as endothermic fuel instead of other commercial catalyst.

Soot Generation in a Coaxial Laminar Diffusion Flame (동축 층류 확산화염에서의 그을음 생성)

  • Shim, Sung-Hoon;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.9-15
    • /
    • 2002
  • Soot generation by combustion process has been investigated with objective of understanding of chemical reaction responsible for its formation in a coaxial laminar propane jet diffusion flame. For the direct photos, as the coflowing air flow rate is reduced, the area of soot luminous zone increases at first, then becomes smaller and smaller, and even disappears. The aspects of soot deposition can be acquired by using nine $15{\mu}m$ thin SiC fibers are positioned horizontally across the flame. Deposited soots on SiC fibers show the soot inception point and growth and soot oxidation zone in a typical propane diffusion. Soot is not generated anymore in a oxidizer deficient conditions of near-extinction and flame is fully occupied by transparent blue flame. It suggests that nonsooting pyroligneous blue reaction is being dominant in a oxidizer deficient ambience. In comparison with luminosities of SiC fibers and flame itself, indirect evidence is found that the process of soot nucleation and growth is endothermic reaction. It is remarkable that there exists two adjacent regions to have antithesis characteristics; one is exothermic reaction of blue flame and another endothermic reaction zone of soot formation.

  • PDF