• Title/Summary/Keyword: Endothelium-derived relaxing factor

Search Result 27, Processing Time 0.025 seconds

Effects of Extracellular $Ca^{2+}$ and $Ca^{2+}$-Antagonists on Endothelium-Dependent Relaxation in Rabbit Aorta (토끼 대동맥 평활근의 내피세포 의존성 이완에 미치는 $Ca^{2+}$$Ca^{2+}$ 길항제의 효과)

  • Suh, Suk-Hyo;Goo, Yong-Sook;Park, Choon-Ok;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.91-102
    • /
    • 1990
  • The effects of extracellular $Ca^{2+}$ and various $Ca^{2+}$ antagonists on endothelium-dependent relaxation to acetylcholine were studied in the isolated rabbit thoracic aorta in order to elucidate the control mechanism of endothelium derived relaxing factor (EDRF) release. Endothelium was removed from aortic strips by gentle rubbing with cotton ball. The effect of hemoglobin on basal tension was also observed with hemolysate. The results obtained were as follows: 1) Endothelium-dependent relaxation (EDR) to acetylcholine (ACh) showed biphasic pattern; the initial rapid relaxation phase and the late slow relaxation phase. 2) With the depletion of the extracellular $Ca^{2+}$, EDR was gradually suppressed, especially the late slow relaxation. 3) Verapamil, nifedipine, $Mn^{2+}$ and $Cd^{2+}$ had not any effect on EDR, while $La^{3+}$ and $Co^{2+}$ suppressed EDR completely. 4) The resting tension of the strips with rubbed endothelium was not altered by the addition of hemoglobin. That of the strips with intact endothelium, however, was enhanced and EDR to ACh was completely blocked From these results, we suggest that extracellular $Ca^{2+}$ is necessary for ACh-induced slow relaxation while $Ca^{2+}$ antagonists have not any effect on EDR.

  • PDF

Electrolysis of Physiological Salt Solution Generates a Factor that Relaxes Vascular Smooth Muscle

  • Song, Pil-Oh;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.217-223
    • /
    • 1998
  • Oxygen-derived free radicals have been implicated in many important functions in the biological system. Electrical field stimulation (EFS) causes arterial relaxation in animal models. We found that EFS applied to neither muscle nor nerve but to Krebs solution caused a relaxation of rat aorta that had been contracted with phenylephrine. In the present study, therefore, we investigated the characteristics of this EIRF (electrolysis-induced relaxing factor) using rat isolated aorta. Results indicated that EIRF acts irrespective of the presence of endothelium. EIRF shows positive Griess reaction and is diffusible and quite stable. EIRF-induced relaxation was stronger on PE-contracted aorta than on KCl-contracted one, and inhibited by the pretreatment with methylene blue. Zaprinast, a cGMP-specific phosphodiesterase inhibitor, potentiated the EIRF-induced relaxation. $N^G-nitro-L-arginine$, NO synthase inhibitor, did not inhibit the EIRF-induced relaxation. Deferroxamine, but not ascorbic acid, DMSO potentiated the EIRF-induced relaxation. These results indicate that electrolysis of Krebs solution produces a factor that relaxes vascular smooth muscle via cGMP-mediated mechanism.

  • PDF

A Study of Endothelium-dependent Pulmonary Arterial Relaxation and the Role of Nitric oxide on Acute Hypoxic Pulmonary Vasoconstriction in Rats (흰쥐 폐동맥의 내피세포의존성 혈관이완과 급성 저산소성 폐동맥수축에서 산화질소의 역할)

  • In, Kwang-Ho;Lee, Jin-Goo;Cho, Jae-Youn;Shim, Jae-Jung;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 1994
  • Backgroud: Since the demonstration of the fact that vascular relaxation by acetylcholine(Ach) results from the release of relaxing factor from the endothelium, the identity and physiology of this endothelium-derived relaxing factor(EDRF) has been the target for many researches. EDRF has been identified as nitric oxide(NO). With the recent evidences that EDRF is an important mediator of vascular tone, there have been increasing interests in defining the role of the EDRF as a potential mediator of hypoxic pulmonary vasoconstriction. But the role of EDRF in modulating the pulmonary circulation is not compeletely clarified. To investigate the endothelium-dependent pulmonary vasodilation and the role of EDRF during hypoxic pulmonary vasoconstriction, we studied the effects of $N^G$-monomethyl-L-arginine(L-NMMA) and L-arginine on the precontracted pulmonary arterial rings of the rat in normoxia and hypoxia. Mothods: The pulmonary arteries of male Sprague Dawley(300~350g) were dissected free of surrounding tissue, and cut into rings. Rings were mounted over fine rigid wires, in organ chambers filled with 20ml of Krebs solution bubbled with 95 percent oxygen and 5 percent carbon dioxide and maintained at $37^{\circ}C$. Changes in isometric tension were recorded with a force transducer(FT.03 Grass, Quincy, USA) Results: 1) Precontraction of rat pulmonry artery with intact endothelium by phenylephrine(PE, $10^{-6}M$) was relaxed completely by acetylcholine(Ach, $10^{-9}-10^{-5}M$) and sodium nitroprusside(SN, $10^{-9}-10^{-5}M$), but relaxing response by Ach in rat pulmonary artery with denuded endothelium was significantly decreased. 2) L-NMMA($10^{-4}M$) pretreatment inhibited Ach($10^{-9}-10^{-5}M$)-induced relaxation, but L-NMMA ($10^{-4}M$) had no effect on relaxation induced by SN($10^{-9}-10^{-5}M$). 3) Pretreatment of the L-arginine($10^{-4}M$) significantly reversed the inhibition of the Ach ($10^{-9}-10^{-5}M$)-induced relaxation caused by L-NMMA($10^{-4}M$) 4) Pulmonary arterial contraction by PE($10^{-6}M$) was stronger in hypoxia than normoxia but relaxing response by Ach($10^{-9}-10^{-5}M$) was decreased, 5) With pretreatment of L-arginine($10^{-4}M$), pulmonary arterial relaxation by Ach($10^{-9}-10^{-5}M$) in hypoxia was reversed to the level of relaxation in normoxia. Conclusion: It is concluded that rat pulmonary arterial relaxation by Ach is dependent on the intact endothelium and is largely mediated by NO. Acute hypoxic pulmonary vasoconstriction is related to the suppression on NO formation in the vascular endothelium.

  • PDF

Mechanism of Relaxation of Rat Aorta by Scopoletin; an Active Constituent of Artemisia Capillaris

  • Kwon Eui Kwang;Jin Sang Sik;oChoi Min H;Hwang Kyung Taek;Shim Jin Chan;Hwang Il Taek;Han Jong Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.389-396
    • /
    • 2002
  • In the present work, we examined the mechanism of vasorelaxant effect of scopoletin, an active constituent of Artemisia capillaris on rat thoracic descending aortic rings. Scopoletin induced a concentration-dependent relaxation in rat thoracic descending aortic rings pre-contracted with phenylephrine (EC/sub 50/ = 238.94±37.4 μM), while it was less effective in rat thoracic descending aortic rings precontracted with high potassium solution (KCI 30 mM). Vasorelaxation by scopoletin was significantly inhibited after endothelial removal, but recovered at high concentration. Pretreatment of rat thoracic descending aortic rings with N/sup G/-nitro-L-arginine (100 μM), a nitric oxide synthase inhibitor, and atropine (1 μM), a muscarinic receptor antagonist, significantly inhibited scopoletin-induced relaxation of rat thoracic descending aortic rings. Neither indomethacin (3 μM), an inhibitor of cydooxygenase, nor propranolol (1 μM), a β -adrenoceptor antagonist, modified the effect of scopoletin. The combination of N/sup G/ -nitro-L-arginine (100 μ M) and miconazole (10 μ M), an inhibitor of cytochrome P 450, did not modify the effect of scopoletin, when compared with pretreatment with N/sup G/-nitro-L-arginine(100 μM) alone. Vasorelaxant effect of scopoletin was inverted by pretreatment with diltiazem (10 μM), a Ca/sup 2+/-channel blocker, at low concentration, while restored at high concentration. Apamin (K/sub ca/-channel blocker, 1 μM), 4-aminopyridine (4-AP, K/sub v/-channel blocker, 1 mM), and tetrodotoxin (TTX, Na/sup +/-channel blocker 1 μM) potentiated the vasorelaxant effect of scopoledn, but glibendamide (K/sub ATP/-channel blocker, 10 μM), tetraetylammonium(TEA, non-selective K-channel blocker, 10 mM) did not affect the relaxation of scopoletin. Free radical scavengers (TEMPO, catalase, mannitol) did not modify vascular tone. These results suggest that nitric oxide, Ca/sup 2+/ -channels play a role in endothelium-dependent relaxations to scopoletin in rat aortas, that apamin, 4-AP, TTX but not glibenclamide, TEA potentiated relaxation to scopoletin mediated by these channels, and that free radicals do not concern to the vasorelaxant effect of scopoletin.

Effect of Guinea Pig Tracheal Epithelium on the Contraction of Rat Vascular Smooth Muscle (기니피그 기도상피세포가 백서의 혈관 평활근 수축에 미치는 영향)

  • Kwon, O-Jung;Yoo, Chul-Gyu;Cho, Sang-Heon;Park, In-Won;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keon-Youl;Han, Yong-Chol;Seoh, Seok-Hyo;Kim, Ki-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.38 no.3
    • /
    • pp.270-279
    • /
    • 1991
  • It has been well known that the integrity of airway epithelium is important in developing of bronchial hyperreactivity or bronchial asthma. But the mechanisms underlying this nonspecific airway hyperresponsiveness are not yet determined. To evaluate the ability of guinea pig trachea to release an epithelium derived relaxing factor (EpDRF) which relax rat vascular smooth muscle, we performed the coaxial bioassay using guinea pig trachea and rat aorta. And to evaluate the nature of EpDRF we investigate the influence of methylene blue and indomethacin on the coaxial bioassay. Results were as follows. 1) Vascular smooth muscle mounted into the epithelium intact trachea which was precontracted with phenylephrine was relaxed by addition of histamine or acetylcholine. But vascular smooth muscle mounted into epithelium denuded trachea failed to be relaxed. 2) Epithelium dependent relaxation of vascular smooth muscle was not affected by pretreatment of methylene blue or indomethacin. These results strongly suggests that guinea pig tracheal epithelium releases EpDRF which is able to relax rat vascular smooth muscle. And EpDRF released by airway epithelium is not related to endothelium derived relaxing factor (EDRF) or cyclooxygenase products.

  • PDF

EFFECTS OF NITRIC OXIDE SYNTHASE INHIBITORS ON OSTEOCLAST-LIKE CELL FORMATION

  • Ahn, Seung-Kyu;Kim, Jung-Kun;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.25 no.6 s.53
    • /
    • pp.715-722
    • /
    • 1995
  • Orthodontic tooth movement in response to orthodontic force results from actions of osteoclasts and osteeoblasts in the cell level. Convincing evidence has now been provided to support the view that osteoclasts are derived from mononuclear cells that originate in the bone marrow or other hematopoietic organs and they migrate to the bones via vascular routes. Nitric oxide(NO), which accounts for the biological properties of endothelium-derived relaxing factor(EDRF), is the endogenous stimulator of soluble guanylate cylase. The discovery of the formation of nitric oxide(NO) from L-arginine in mammalian tissues and its biological roles has, in the last 7 years, thrown new light onto many areas of research. Data from experiments in vitro showed that N-metyl-L-arginine(L-NMA) and L-nitro-L- arginine(L-NAME) are competitive inhibitors of nitric oxide synthase. This study suggest that the multinucleated cells in our culture have characteristics of osteoclasts and that the potential bone cell activity of nitric oxide in vitro may be mediated in part by stimulation of marrow mononuclear cells to form osteoclast-like cells. Bone marrow cells were obtaineed from tibia of 19-days old chick embryo. After sacrifice, tibia was quickly dissected and the bone were then split to expose the medullary bone. The cells were attached for 4 hours and the nonadherent cells were collected. Marrow cells weere cultured in 96-well plate in medium 199. To examine the number of TRAP-positive multinucleated cells(MNCs), $10^{-8}\;M\;Vit=D_3$ and various concentration of L-NMA and L-NAME weere added at the beginning of cultures and with each medium change. After 7 days of culture. tartrate-resistant acid phosphatase(TRAP) staining was performed for microscopic evaluation. Cells haying more than three nuclei per cell were counted as MNCs. The obsrved results were as follows;1. 1,25-dihydroxyvitamine $D_3$ stimulated the osteoclast-like multinucleated cells in cultures of chick embryo bone marrow. 2. Nitric oxide synthase inhibitors(NOSI ; N-NMA, N-NAME) stimulated the osteoclast-like cells in cultures of chick embry bone marrow. 3. 1,25-dihydroxyvitamine$D_3$ and nitric oxide synthase inhibitors did not appear to have additive effect on the generation of TRAP-positive MNCs. These results suggest that nitric oxide synthase inhibitors may stimulate the osteoclast-like multinucleated cell formation and fusion in cultures of chick bone marrow.

  • PDF

The Effects of Nitric Oxide Inhibitor on Hyperdynamic Circulation in Portal Hypertensive Rats (산화 질소 억제제가 문맥 고혈압 쥐의 혈역학 변화에 미치는 영향)

  • Kim, Pill-Young;Jang, Byeong-Ik;Kim, Tae-Nyeun;Chung, Moon-Kwan
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.2
    • /
    • pp.181-192
    • /
    • 1999
  • Background: Nitric oxide, a vasodilator synthesized from L-arginine by vascular endothelial cells, accounts for the biological activity of endothelium derived relaxing factor. Previous studies demonstrated that nitric oxide inhibitor, $N^{\omega}$-Nitro-L-Arginine(NNA) diminished the hyperdynamic splanchnic and systemic circulation in portal hypertensive rats The present study was done to determine the role of nitric oxide in the development of hyperdynamic circulations in the prehepatic portal hypertensive rat model produced by partial portal vein ligation. Methods: The portal hypertensive rats were divided into water ingestion group and NNA ingestion group. After partial portal vein ligation, NNA ingestion group and water ingestion group received NNA 1mg/kg/day and plain water through the mouth for 14 days, respectively. Cardiac output, mean arterial pressure, organ blood flow and porto-systemic shunting were measured by radioisotope labeled microsphere methods. Vascular resistances were calculated by standard equation. Results: There were significant decreases in mean arterial pressure, increases in cardiac output and cardiac index, and decreases in total systemic and splanchnic vascular resistance in portal hypertensive rats compared to normal control group (p<0.01). Compared to the water ingestion group, significantly increased mean arterial pressure with decreased cardiac output and cardiac index were developed in the NNA ingestion group. Total systemic and splanchnic vascular resistance were significantly increased in the NNA ingestion group compared to water ingestion group (p<0.05). But, there was no significant difference in portal pressure between the two groups. Conclusion: The hemodynamic results of this study indicate that hyperdynamic circulation in prehepatic portal hypertensive rat mode1 was attenuated by ingestion of NNA. Nitric oxide may play an important role in the development of hyperdynamic circulation with splanchnic vasodilation in chronic portal hypertension.

  • PDF