• 제목/요약/키워드: Endothelial function

검색결과 248건 처리시간 0.031초

혈관내피세포에서 Vascular Cell Adhesion Molecule-1 발현에 대한 혈장 지단백의 효과 (Effects of Plasma Lipoproteins on Expression of Vasular Cell Adhesion Molecule- in Human Microvasuclar Endothelial Cells)

  • 박성희
    • Journal of Nutrition and Health
    • /
    • 제31권8호
    • /
    • pp.1235-1243
    • /
    • 1998
  • Although an elevated plasma level of high density lipoprotein (HDL) is known as a protective component against the development of atherosclerosis and ensuing coronary heart diseases, the related mechanisms are still not established . It has been clearly demonstrated in the early stages of atherogenesis that adhesion of monocytes and lymphocytes to the vascular endothelium is enhanced via adhesion molecules, and that monocytes and macrophages accumulate in the subendothelial space. The present study has investigated whether isolated plasma HDL plays a role in protection against atherogenesis by inhibiting the expression of vascular cell adhesioin molecule-1(VCAM-1) on the endothelial cells. Effects of plasma native low density lipoprotein (LDL) and ac ethylated LDL(AcLDL) on VCAM-1 expression were also examined by using an immunocytochemical technique. While plasma HDL did not alter the basal expression of VCAM-1 , lipopolysaccharide(LPS) induction of this adhesion modlecule was markedly inhibited at a phyaiological concentration of HDL. In contrast, 30$\mu\textrm{g}$ protein/ml AcLDL increased sifnificantly both basal VCAM-1 expression and its LPD induction , suggesting that this modified LDL enhances leukocyte adhesiion to endothelial cells. Unlike AcLDL , plasma native LDL inhibited significantly VCAM-1 expression. This indicates that LDL did not undergo oxidative modificantion while incubated with endothelial cells. These results suggest that plasam HDL may inhibit atherogenesis by reducing the expression of adhesion molecules, which is a protective mechanism independent of tis reverse cholesterol transport function . Modified LDL is a potent iducer for adhesion molecules in vascular endothelical cells and could play a role in the pathogenesis of atherosclerosis by adhering to blood cells.

  • PDF

MicroRNA let-7c inhibits Bcl-xl expression and regulates ox-LDL-induced endothelial apoptosis

  • Qin, Bing;Xiao, Bo;Liang, Desheng;Li, Ye;Jiang, Ting;Yang, Huan
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.464-469
    • /
    • 2012
  • Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. MiRNA let-7 family is known to be involved in the regulation of cell apoptosis. However, the function of let-7 in ox-LDL induced ECs apoptosis and atherosclerosis is still unknown. Here, we show that let-7c expression was markedly up-regulated in ox-LDL induced apoptotic human umbilical cord vein endothelial cells (HUVECs). Let-7c over-expression enhanced apoptosis in ECs whereas inhibition of let-7c could partly alleviate apoptotic cell death mediated by ox-LDL. Searching for how let-7c affected apoptosis, we discovered that antiapoptotic protein Bcl-xl was a direct target of let-7c in ECs. Our data suggest that let-7c contributes to endothelial apoptosis through suppression of Bcl-xl.

Effects of Vitamin D on Blood Pressure and Endothelial Function

  • Min, Bokyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권5호
    • /
    • pp.385-392
    • /
    • 2013
  • Vitamin D deficiency is prevalent, primarily due to limited sun exposure, which may be observed in urban areas, or as a result of modern lifestyles. Common myths about vitamin D persist, including that it is mostly obtained from the diet and is only essential for bone and mineral homeostasis. Nonetheless, advances in biomedical science suggest that vitamin D is a hormone that is integral to numerous physiologic functions in most cells and tissues. Therefore, abnormal vitamin D levels may contribute to health disturbances. A number of recent reports on potential associations between vitamin D deficiency and cardiovascular disease have highlighted its role in this system. A focus over the previous decade has been to better understand the mechanisms behind vitamin D regulation and the pathophysiology associated with suboptimal vitamin D levels. Vitamin D deficiency is highly associated with the incidence of cardiovascular diseases, even when considering other well-known risk factors. In this process, the renin-angiotensin system is disrupted, and hypertension and endothelial dysfunction contribute to the risk of cardiovascular disease. Likewise, clinical outcomes upon the normalization of vitamin D levels have been investigated in different patient populations. It makes sense that vitamin D supplementation to improve vitamin D status among vitamin D-deficient individuals could be useful without requiring a sudden lifestyle change. This manuscript provides a brief overview of vitamin D metabolism and the vitamin D receptor. It also summarizes the current clinical research relating to vitamin D supplementation and its effects on hypertension and endothelial dysfunction in cardiovascular medicine.

금 나노입자의 VEGF에 의해 유발된 혈관 내피세포의 신생혈관형성 억제 효과 (Antiangiogenic Effects of Gold Nanoparticles VEGF-induced Vascular Endothelial Cells)

  • 최승현;유근창;김인숙;채수철
    • 환경생물
    • /
    • 제28권1호
    • /
    • pp.14-19
    • /
    • 2010
  • 신생혈관 형성은 세포의 성장 및 상처 치유 과정에서 중요한 현상이다. 그러나 성장인자의 불균형은 시각 및 면역질환과 같은 다양한 질환을 야기한다. 이러한 질환을 치료하는 방법 중 신생혈관 형성을 억제하는 것이 중요한 방법 중 하나이다. AuNPs의 기능과 기전이 신생혈관 형성에 있어서 아직 밝혀진 바가 없다. 현재 PEDF가 항신생혈관 형성 물질로 제안되고 있다. 본 연구에서 우리는 AuNPs가 BRECs에서 VEGF로 유도된 세포의 증식 및 이동, 신생혈관의 형성을 억제하였고 이는 세포의 성장과 침윤 및 전이와 관련된 신생혈관 형성을 억제한다고 사료된다.

Effect of age on endothelial function in rat aorta

  • 정이숙;조태순;신화섭
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.90-90
    • /
    • 1995
  • The Influence of age on the endothelial modulation of angiotensin II (AII)-induced contractile response was investigated in isolated aortic rings of rats ranging in age from 0.7 to 20 months. Hemoglobin and L-NAME were used to examine whether age-related changes in the EDRF-releasing system were involved in endothelial modulation of All-induced contraction in rat aorta. In all five age groups (0.7, 1.5, 3, 6, 20 months), hemoglobin (10 ${\mu}$M) significantly enhanced All-induced contractile response only in aorta with endothelium intact. L-NAME (10 ${\mu}$M) Produced a significant enhancement in All responses in endothelium-intact aortas from rats aged 0.7 and 1.5 months, but it had no effect in aortas from older rats aged 6 and 20 months. Indomethacin (10 ${\mu}$M) did not affect All-induced contractile responses in both endothelium intact and removed aortas from rats at the age of 0.7 to 20 months. Hemoglobin (10 ${\mu}$M) abolished acetylcholine-induced relaxation response in aortas from young and old rats. L-NAME completely abolished the relaxation in aortas from young (0.7 and 1.5 months), but incompletely in aortas from older (6 and 20 months) rats. The sensitivity of endothelium-dependent relaxation to A23187 increased with age between ages of 0.7 and 6 months, with no further increase noted up to 20 months of age. These results suggest that endothelial modulation of AII-induced contraction in rat aorta might involve age-related alteration in EDRF-releasing system, probably via post-receptor mechanism.

  • PDF

The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development

  • Oh, Se-Yeong;Kim, Ju Young;Park, Changwon
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1029-1036
    • /
    • 2015
  • Appropriate vessel development and its coordinated function is essential for proper embryogenesis and homeostasis in the adult. Defects in vessels cause birth defects and are an important etiology of diseases such as cardiovascular disease, tumor and diabetes retinopathy. The accumulative data indicate that ETV2, an ETS transcription factor, performs a potent and indispensable function in mediating vessel development. This review discusses the recent progress of the study of ETV2 with special focus on its regulatory mechanisms and cell fate determining role in developing mouse embryos as well as somatic cells.

Blood-neural Barrier: Intercellular Communication at Glio-Vascular Interface

  • Kim, Jeong-Hun;Kim, Jin-Hyoung;Park, Jeong-Ae;Lee, Sae-Won;Kim, Woo-Jean;Yu, Young-Suk;Kim, Kyu-Won
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.339-345
    • /
    • 2006
  • The blood-neural barrier (BNB), including blood-brain barrier (BBB) and blood-retinal barrier (BRB), is an endothelial barrier constructed by an extensive network of endothelial cells, astrocytes and neurons to form functional 'neurovascular units', which has an important role in maintaining a precisely regulated microenvironment for reliable neuronal activity. Although failure of the BNB may be a precipitating event or a consequence, the breakdown of BNB is closely related with the development and progression of CNS diseases. Therefore, BNB is most essential in the regulation of microenvironment of the CNS. The BNB is a selective diffusion barrier characterized by tight junctions between endothelial cells, lack of fenestrations, and specific BNB transporters. The BNB have been shown to be astrocyte dependent, for it is formed by the CNS capillary endothelial cells, surrounded by astrocytic end-foot processes. Given the anatomical associations with endothelial cells, it could be supposed that astrocytes play a role in the development, maintenance, and breakdown of the BNB. Therefore, astrocytes-endothelial cells interaction influences the BNB in both physiological and pathological conditions. If we better understand mutual interactions between astrocytes and endothelial cells, in the near future, we could provide a critical solution to the BNB problems and create new opportunities for future success of treating CNS diseases. Here, we focused astrocyte-endothelial cell interaction in the formation and function of the BNB.

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.

Alk3/Alk3b and Smad5 Mediate BMP Signaling during Lymphatic Development in Zebrafish

  • Kim, Jun-Dae;Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.270-274
    • /
    • 2014
  • Lymphatic vessels are essential to regulate interstitial fluid homeostasis and diverse immune responses. A number of crucial factors, such as VEGFC, SOX18, PROX1, FOX2C, and GJC2, have been implicated in differentiation and/or maintenance of lymphatic endothelial cells (LECs). In humans, dysregulation of these genes is known to cause lymphedema, a debilitating condition which adversely impacts the quality of life of affected individuals. However, there are no currently available pharmacological treatments for lymphedema, necessitating identification of additional factors modulating lymphatic development and function which can be targeted for therapy. In this report, we investigate the function of genes associated with Bone Morphogenetic Protein (BMP) signaling in lymphatic development using zebrafish embryos. The knock-down of BMP type II receptors, Bmpr2a and Bmpr2b, and type I receptors, Alk3 and Alk3b, as well as SMAD5, an essential cellular mediator of BMP signaling, led to distinct lymphatic defects in developing zebrafish. Therefore, it appears that each constituent of the BMP signaling pathway may have a unique function during lymphatic development. Taken together, our data demonstrate that BMP signaling is essential for normal lymphatic vessel development in zebrafish.