• Title/Summary/Keyword: Endothelial apoptosis

Search Result 139, Processing Time 0.022 seconds

4-Hexylresorcinol induced angiogenesis potential in human endothelial cells

  • Kim, Min-Keun;Kim, Seong-Gon;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.23.1-23.11
    • /
    • 2020
  • Background: 4-Hexylresorcinol (4HR) is able to increase angiogenesis. However, its molecular mechanism in the human endothelial cells has not been clarified. Methods: As endothelial cells are important in angiogenesis, we treated the human umbilical vein endothelial cells (HUVECs) with 4HR and investigated protein expressional changes by immunoprecipitation high-performance liquid chromatography (IP-HPLC) using 96 antisera. Results: Here, we found that 4HR upregulated transforming growth factor-β (TGF-β)/SMAD/vascular endothelial growth factor (VEGF) signaling, RAF-B/ERK and p38 signaling, and M2 macrophage polarization pathways. 4HR also increased expression of caspases and subsequent cellular apoptosis. Mechanistically, 4HR increased TGF-β1 production and subsequent activation of SMADs/VEGFs, RAF-B/ERK and p38 signaling, and M2 macrophage polarization. Conclusion: Collectively, 4HR activates TGF-β/SMAD/VEGF signaling in endothelial cells and induced vascular regeneration and remodeling for wound healing.

4-Hydroxynonenal Induces Endothelial Cell Apoptosis via ROS and Peroxynitrite Generation (4-Hydroxynonenal에 생성된 ROS와 peroxynitrite를 통한 내피세포의 세포사에 관한 연구)

  • Chung, Sang-Woon;Yee, Su-Bog;Lee, Ji-Young;Hossain, Mohammad Akbar;Kim, Dong-Hwan;Yoon, Jeong-Hyun;Chung, Hae-Young;Kim, Nam-Deuk;Kim, Nam-Deuk
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.961-968
    • /
    • 2011
  • The formation of reactive lipid aldehydes, 4-hydroxynonenal (HNE) is shown to be derived from fatty acid hydroperoxides through the oxidative process. Among its known effects in cytotoxicity, HNE has been implicated in apoptotic cell death. To delineate its putative role as a potential mediator, we investigated the mechanism by which HNE induces apoptosis of endothelial cells (ECs). The anti-proliferative effects of HNE were tested through MTT assay after exposure to various concentrations ($5\sim15\;{\mu}M$) of HNE. We observed apoptotic bodies with propidium iodide staining, and measured the HNE induction of endothelial apoptosis by flow cytometry assay. We observed that cells exposed to HNE for 24 hr resulted in increased poly(ADP-ribose) polymerase cleavage and up-regulation of Bax. Data on the HNE action strongly indicated the involvement of reactive species, namely, intracellular ROS, nitrite, and peroxynitrite. To obtain evidence on the implication of ROS and peroxynitrite in HNE-induced apoptosis, a ROS scavenger, N-acetylcysteine (NAC), and a peroxynitrite scavenger, penicillamine, were tested. Results clearly indicate that the induction of apoptosis by HNE was effectively inhibited by NAC and penicillamine. Based on the present data, we conclude that the endothelial apoptosis induced by HNE involves both ROS generation and peroxynitrite activity. Our new data could lead to a redefinition of HNE action on apoptosis in ECs.

CONCOMITANT INHIBITION OF EPIDERMAL GROWTH FACTOR AND VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR TYROSINE KINASES IN ORAL SQUAMOUS CELL CARCINOMA (구강 편평상피세포암에서 상피성장인자 수용체와 혈관내피성장인자 수용체 타이로신 활성화효소의 동시 억제)

  • Park, Young-Wook;Lee, Sang-Shin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Squamous cell carcinoma(SCC) of head and neck(SCCHN) is the sixth most common human malignant tumor. However, despite advances in prevention and treatment of SCC, the five-year survival rates for patients remain still low. To improve the outcome for patients with SCCHN, novel treatment strategies are needed. Overexpression of the epidermal growth factor(EGF) and activation of its receptor(EGFR) are associated with progressive growth of SCCHN. Vascular endothelial growth factor(VEGF) signaling molecules are related with neoangiogenesis and vascular metastasis of SCC. In this study, we determined the therapeutic effect of AEE788(Novartis Pharma AG, Basel, Switzerland), which is a dual inhibitor of EGFR/ErbB2 and VEGFR tyrosine kinases, on human oral SCC. At first, we screened the expression of EGFR, c-ErbB2(HER-2) and VEGFR-2 in a series of human oral SCC cell lines. And then we evaluated the effects of AEE788 on the phosphorylation of EGFR and VEGFR-2 in a oral SCC cell line expressing EGFR/HER-2 and VEGFR-2. We also evaluated the effects of AEE788 alone, or with paclitaxel(Taxol) on the oral SCC cell growth and apoptosis. As a result, all oral SCC cells expressed EGFR and VEGFR-2. Treatment of oral SCC cells with AEE788 led to dose-dependent inhibition of EGFR and VEGFR-2 phosphorylation, growth inhibition, and induction of apoptosis. Moreover, AEE788 sensitizes the cells to paclitaxel-mediated toxicity and apoptosis. These data mean EGFR and VEGFR-2 can be reliable targets for molecular therapy of oral SCC, and therefore warrant clinical use of EGFR/VEGFR inhibition in the treatment of patients with recurrent or metastatic oral SCC.

EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway

  • Zhang, Chao;Wang, Deng-Feng;Zhang, Zhuang;Han, Dong;Yang, Kan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.584-590
    • /
    • 2017
  • Ginkgo biloba extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, ${\gamma}$-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

Expression of Bax and Bcl-2 in Tumour Cells and Blood Vessels of Breast Cancer and their Association with Angiogenesis and Hormonal Receptors

  • Jaafar, Hasnan;Abdullah, Suhaila;Murtey, Mogana Das;Idris, Fauziah M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3857-3862
    • /
    • 2012
  • A total of 96 cases of invasive breast ductal carcinoma were examined for immunohistochemical expression of Bax and Bcl-2 in the epithelial tumor cells and endothelial cells of the blood vessels. We also investigated the association between both proteins in the epithelium in relation to tumor characteristics such as tumor size, grade, lymph node involvement, microvessel density (MVD), hormonal receptors expression and c-erbB-2 overexpression. Bax expression showed a significant association between tumor and endothelial cells (p<0.001) while Bcl-2 expression in tumor cells was inversely associated with that in the endothelial cells (p<0.001). Expression of Bcl-2 in tumor cells was strongly associated with expression of estrogen and progesterone receptors (p=0.003 and p=0.004, respectively). In addition, intratumoral MVD was significantly higher than peritumoral MVD (p<0.001) but not associated with Bax or Bcl-2 expression and other tumor characteristics. We concluded that the number of endothelial cells undergoing apoptosis was in direct linkage with the number of apoptotic tumor cells. Anti-apoptotic activity of the surviving tumor cells appears to propagate cancer progression and this was influenced by the hormonal status of the cells. Tumor angiogenesis was especially promoted in the intratumoral region and angiogenesis was independent of anti-apoptotic activity.

Autophagy Is a Potential Target for Enhancing the Anti-Angiogenic Effect of Mebendazole in Endothelial Cells

  • Sung, So Jung;Kim, Hyun-Kyung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.117-125
    • /
    • 2019
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has recently been noted as a repositioning candidate for angiogenesis inhibition and cancer therapy. However, the definite anti-angiogenic mechanism of MBZ remains unclear. In this study, we explored the inhibitory mechanism of MBZ in endothelial cells (ECs) and developed a novel strategy to improve its anti-angiogenic therapy. Treatment of ECs with MBZ led to inhibition of EC proliferation in a dose-dependent manner in several culture conditions in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) or FBS, without selectivity of growth factors, although MBZ is known to inhibit VEGF receptor 2 kinase. Furthermore, MBZ inhibited EC migration and tube formation induced by either VEGF or bFGF. However, unexpectedly, treatment of MBZ did not affect FAK and ERK1/2 phosphorylation induced by these factors. Treatment with MBZ induced shrinking of ECs and caused G2-M arrest and apoptosis with an increased Sub-G1 fraction. In addition, increased levels of nuclear fragmentation, p53 expression, and active form of caspase 3 were observed. The marked induction of autophagy by MBZ was also noted. Interestingly, inhibition of autophagy through knocking down of Beclin1 or ATG5/7, or treatment with autophagy inhibitors such as 3-methyladenine and chloroquine resulted in marked enhancement of anti-proliferative and pro-apoptotic effects of MBZ in ECs. Consequently, we suggest that MBZ induces autophagy in ECs and that protective autophagy can be a novel target for enhancing the anti-angiogenic efficacy of MBZ in cancer treatment.

Decreased Expression of Inhibitor of DNA-binding (Id) Proteins and Vascular Endothelial Growth Factor and Increased Apoptosis in Ovarian Aging

  • Park, Min Jung;Park, Sea Hee;Moon, Sung Eun;Koo, Ja Seong;Moon, Hwa Sook;Joo, Bo Sun
    • Development and Reproduction
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • This study examined the expression of inhibitor of DNA-binding (Id) proteins and vascular endothelial growth factor (VEGF) in the ovary according to female age using a mice model as the first step in investigating the potential role of Ids and VEGF in ovarian aging. C57BL inbred female mice of three age groups (6-9, 14-16, and 23-26 weeks) were injected with 5 IU pregnant mare's serum gonadotropin (PMSG) in order to synchronize the estrus cycle. After 48 h, ovarian expression of Ids and VEGF was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. Ovarian apoptosis was examined by ovarian expression of Bcl-2 and Bcl-xL. Expression of Id-1 and VEGF was decreased with advancing female age, but not Id-2, Id-3, and Id-4. In particular, their expressions were significantly decreased in aged mice of 23-26 weeks compared with the young mice of 6-9 weeks (p < 0.05). In contrast, ovarian apoptosis was greatly increased in the aged mice compared to the young mice. This result suggests that Id-1 may have an implicated role in ovarian aging by associating with VEGF.

Suppressive Effect of Arazyme on Neutrophil Apoptosis in Normal and Allergic Subjects

  • Kim, In Sik;Lee, Ji-Sook
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Arazyme is a metalloprotease secreted by Aranicola proteolyticus that was previously shown to suppress cytokine expression of keratinocytes and endothelial cells and inhibit histopathological features in an atopic dermatitis-like animal model. However, the regulatory effects of arazyme in other allergic diseases have yet to be elucidated. In this study, we investigated whether arazyme is effective against neutrophil apoptosis in allergic diseases such as allergic rhinitis and asthma. Arazyme inhibited neutrophil apoptosis of normal subjects in a dose-dependent manner. However, the antiapoptotic effect of arazyme was reversed by LY294002, an inhibitor of PI3K, AKTi, an inhibitor of Akt, PD98059, an inhibitor of MEK, and BAY-11-7085, an inhibitor of NF-${\kappa}B$. Arazyme induced activation of NF-${\kappa}B$ via PI3K/Akt/ERK pathway. The anti-apoptotic effect of arazyme is associated with inhibition of cleavage of caspase 3 and caspase 9. Arazyme inhibited constitutive apoptosis of neutrophil in a dose-dependent manner in allergic subjects, and its mechanism was shown to be associated with PI3K/Akt/ERK/NF-${\kappa}B$. The results presented here improve our understanding of neutrophil apoptosis regulation and will facilitate development of drugs for treatment of allergic diseases.

An Increased Proportion of Apoptosis in CD4+ T Lymphocytes Isolated from the Peripheral Blood in Patients with Stable Chronic Obstructive Pulmonary Disease

  • Ju, Jinyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.2
    • /
    • pp.132-137
    • /
    • 2018
  • Background: The pathophysiology of chronic obstructive pulmonary disease (COPD) includes inflammation, oxidative stress, an imbalance of proteases and antiproteases and apoptosis which has been focused on lately. Abnormal apoptotic events have been demonstrated in both epithelial and endothelial cells, as well as in inflammatory cells including neutrophils and lymphocytes in the lungs of COPD patients. An increased propensity of activated T lymphocytes to undergo apoptosis has been observed in the peripheral blood of COPD patients. Therefore, the apoptosis of T lymphocytes without activating them was investigated in this study. Methods: Twelve control subjects, 21 stable COPD patients and 15 exacerbated COPD patients were recruited in the study. The T lymphocytes were isolated from the peripheral blood using magnetically activated cell sorting. Apoptosis of the T lymphocytes was assessed with flow cytometry using Annexin V and 7-aminoactinomycin D. Apoptosis of T lymphocytes at 24 hours after the cell culture was measured so that the T lymphocyte apoptosis among the control and the COPD patients could be compared. Results: Stable COPD patients had increased rates of $CD4^+$ T lymphocyte apoptosis at 24 hours after the cell culture, more than the $CD4^+$ T lymphocyte apoptosis which appeared in the control group, while the COPD patients with acute exacerbation had an amplified response of $CD4^+$ T lymphocyte apoptosis as well as of $CD8^+$ T lymphocyte apoptosis at 24 hours after the cell culture. Conclusion: Stable COPD patients have more apoptosis of $CD4^+$ T lymphocytes, which can be associated with the pathophysiology of COPD in stable conditions.

Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells

  • Lee, Seung Eun;Park, Yong Seek
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other ${\alpha},{\beta}$-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an ${\alpha},{\beta}$-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin Vepropidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells.