• 제목/요약/키워드: Endoscopic capsule

검색결과 13건 처리시간 0.017초

Racemose Cysticercosis in the Cerebellar Hemisphere

  • Kim, Sang-Wook;Kim, Moon-Kyu;Oh, Sae-Moon;Park, Se-Hyuck
    • Journal of Korean Neurosurgical Society
    • /
    • 제48권1호
    • /
    • pp.59-61
    • /
    • 2010
  • Neurocysticercosis is the most common parasitic disease of the central nervous system in humans, caused by infection of the larval stage of the pork tapeworm, Taenia solium. However, cerebellar involvement is rarely reported. We report of a case of racemose cysticercosis in the cerebellar hemisphere. A 44-year-old man presented with headache and dizziness. Magnetic resonance imaging showed hydrocephalus and an ill-defined, multicystic cerebellar mass with hypersignal on T2-weighted images, hyposignal on T1-weighted images and rim enhancement after gadolinium injection. The patient underwent endoscopic third ventriculostomy and the cyst resection was done through a craniotomy. In surgical field, cysts were conglomerated in a dense collagen capsule that were severely adherent to surrounding cerebellar tissue, and transparent cysts contained white, milky fluid. Histological findings confirmed the diagnosis of cysticercosis. He received antiparasitic therapy with praziquantel after surgery. Racemose cysticercosis is rare in the cerebellar hemisphere but neurocysticercosis should be taken into consideration as a differential diagnosis of multiple cystic lesions in the cerebellum.

캡슐내시경 영상 딥러닝을 위한 색상 유사도 기반의 클래스 레이블링 기법 (Color Similarity-based Class Labeling Method for Deep Learning of Capsule Endoscopic Images)

  • 박예슬;황규본;이정원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.749-752
    • /
    • 2017
  • 캡슐내시경 검사는 일반내시경으로는 관찰하기 힘든 소장 기관을 관찰할 수 있어 최근 환자들 사이에서 수요가 늘고 있는 검사 방법 중 하나이다. 이와 같은 캡슐내시경으로부터 병변에 대한 의료 정보가 획득될 수 있는데, 최근에는 캡슐내시경 영상의 학습을 통해 이를 자동으로 획득하려는 시도들이 이루어지고 있다. 예를 들면, 캡슐의 위치를 추적하기 위해 위장관의 개략적인 위치(위, 소장 등)를 파악하거나, 캡슐내시경 영상으로부터 관찰될 수 있는 병변(폴립 등)을 검출하기 위해 영상의 학습이 수행되고 있는 상황이다. 그러나 캡슐내시경의 방대한 영상 프레임 중에서 병변에 대한 영상은 극히 일부분이기 때문에, 기존 학습 영상의 클래스(레이블)는 다양한 병변에 대한 정의나 영상에서 확인될 수 있는 구체적인 속성이 고려되지 않는다. 따라서 본 논문에서는 캡슐내시경 관련 표준(MST, CEST)에서 정의하고 있는 주요 병변 정보에 대한 색상 유사도 분석을 통해, 출력층에서 활용될 수 있는 클래스 레이블링 기법을 제안한다. 제안하는 기법은 유사한 특성을 보이는 영상의 구분을 통해 세부적인 클래스 레이블링을 수행하여 체계적인 학습 모델의 설계를 가능케한다.

캡슐내시경 동영상으로부터 학습 데이터 레이블링을 위한 정보 추출 기법 (Information Extraction Method for Labeling Learning Data from the Capsule Endoscopic Video Images)

  • 장현웅;임창남;박예슬;이광재;이정원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.375-378
    • /
    • 2019
  • 최근 딥러닝과 머신러닝 기법이 소프트웨어의 성능 향상에 도움이 되는 것이 입증됨에 따라, 의료 영상 진단 보조 소프트웨어를 개발하기 위한 시도가 활발해 지고 있다. 그 중 캡슐내시경은 소장 소화기관을 관찰할 수 있는 초소형 의료기기로, 기존의 내시경 검사와 다르게 이물감이 느껴지지 않고 의료보험 적용으로 최근 들어 널리 이용되고 있다. 일반적으로 캡슐 내시경은 8 시간 동안 소화기간을 촬영하며, 한 번의 검사 결과로 생성된 동영상 데이터 셋은 수 만장의 이미지를 포함하기 때문에, 방대한 양의 이미지들을 효율적으로 관리하기 위한 체계가 필요하다. 특히, 방대한 양의 캡슐내시경 이미지를 학습하는 경우, 수 만장의 이미지 속에서 유의미한 특징(촬영정보, 의사소견, 환자정보, 병변의 위치 및 크기 등)을 추출해내야 하므로 학습 데이터 레이블링을 위한 정보를 정확히 추출해야 하는 작업이 요구된다. 따라서 본 논문에서는 캡슐내시경 영상을 학습할 때, 학습 데이터 레이블 정보를 체계적으로 구축할 수 있게 하는 레이블 정보 추출 기법을 제안하고자 한다. 제안하는 기법은 병원에서 14년간 수집된 총 340명의 캡슐내시경 데이터(약 1,700 만장의 이미지)를 토대로 영상데이터를 구조적으로 분석하여 유의미한 정보를 추출하고 노이즈 데이터를 제거한 뒤, 빅데이터 저장소에 적재할 수 있음을 보였다.