• Title/Summary/Keyword: Endophyte

Search Result 97, Processing Time 0.027 seconds

Metabolite Chemical Composition of the Bletilla striata (Thunb.) Reichb. f. Endophyte Penicillium oxalicum

  • Ran Liu;Xuehua Han;Jing Gao;Min Luo;Dale Guo;Guangzhi Wang
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.148-156
    • /
    • 2023
  • Penicillium oxalicum strain can be isolated from the Bletilla striata (Thunb.) Reichb. f. tubers. Its solid-state fermentation products are concentrated by percolation extraction. Separation and purification have been conducted to the ethyl acetate extracts by preparative HPLC. Based on the use of spectrometry, we have determined 17 known compounds, 12,13-dihydroxy-fumitremorgin C (1), pseurotin A (2), tyrosol (3), cyclo-(L-Pro-L-Val) (4), cis-4-hydroxy-8-O-methylmellein (5), uracil (6), cyclo-(L-Pro-L-Ala) (7), 1,2,3,4-tetrahydro-4-hydroxy-4-quinolin carboxylic acid (8), cyclo-(Gly-L-Pro) (9), 2'-deoxyuridine (10), 1-(b-D-ribofuranosyl)thymine (11), cyclo-(L-Val-Gly) (12), 2'-deoxythymidine (13), cyclo-(Gly-D-Phe) (14), cyclo-L-(4-hydroxyprolinyl)-D-leucine (15), cyclo-(L)-4-hydroxy-Pro-(L)-Phe (16), uridine (17). Here, we report compounds 1-3, 5, 7-8, 11-12, 14-17 are first found and isolated from this endophyte.

Anatomical Characteristics of Korean Mistletoe [Viscum album var. coloratum(Kom.) Ohwi] Stem (한국산 겨우살이 수간의 조직특성)

  • Lee, Bo-Duk;Park, Beyung-Su
    • Korean Journal of Plant Resources
    • /
    • v.22 no.4
    • /
    • pp.287-292
    • /
    • 2009
  • Recently, the consumption of mistletoe[Viscum album var. coloratum(Kom.) Ohwi] is increasing because of its good medical effectiveness with the increased concern on the natural medicines and foods. The result obtained from the investigation on the stem tissues of the mistletoe and the oriental chestnut oak, a host plant species, are as follows. Haustorium from the seeds of the mistletoe after their sticking to the branches of the host plant penetrates into the bark where it forms the endophyte system through the active cell division. The endophyte grown in the cambium of the host plant makes the stems and leaves as the outer tissues in a certain time. Even through lignification of the host wood in the branches the oriental chestnut oak was not progressive, its tylosis coas developed partially assembly due to the formation of the endophyte. The stems of the mistletoe consisted of vascular tracheid, selereid, and ray and axial parenchyma, classified as a hardwood without vessels. The vascular tracheids seemed to take a role instead of the vessels in the mistletoe plant from the result that the pits of the vessels in the host branches are linked to the vessel-form tracheid in the mistletoe stems. The constituent ratio of the sclereid cells in the mistletoe stems increased with aging. Furthermore their ratio of the parenchyma cells was higher, which contained the more cell content, compared with the cells of the general woody plant species.

Studies on the Haustorium of Cuscuta japonica Choisy (새삼(Cuscuta japonica Choisy)의 흡기에 관한 연구 I. 숙주조직 침투전의 흡기)

  • 이재두
    • Journal of Plant Biology
    • /
    • v.28 no.4
    • /
    • pp.261-270
    • /
    • 1985
  • The portion of Cuscuta japonica haustorium which lies external to the host tissues, the upper haustorium, was investigated at the light- and electron-microscopic levels. The haustorium lightly contacted with the host was formed by the expansion of the epidermis and cortex of the stem at the contact side, and to have a group of meristematic cells within the haustorial cortex. When such a haustorium was closely contacted with the host, the meristematic region transformed into a primordial structure of the endophyte (endophyte primordium, EP) which may penetrate into the host tissues. EP consisted of the three kinds of cell group: dividing cells at the adaxial or proximal side; large, elongate cells (idioblasts) at the middle portion,; compressed cells at the abaxial or basal side. the idioblasts were characterized by the presence of large nucleus, dense cytoplasm, several small vacuoles, and abundant cell organelles including the multilamellar structures and cytosegresomes, and thus suggested to have a high metabolic activity. The features of the EP were discussed in relation to the possibility of the penetrating into host tissues.

  • PDF

Neocosmospora rubicola, an Unrecorded Endophytic Fungus Isolated from Roots of Glycyrrhiza uralensis in Korea

  • Kim, Jin-Hee;Kim, Dong-Yeo;Park, Hyeok;Cho, Jae Hee;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.45 no.1
    • /
    • pp.63-67
    • /
    • 2017
  • Through a survey of symbiotic endophytic fungi, we isolated an endophyte fungal strain from the roots of Glycyrrhiza uralensis in Korea. The isolated fungal strain was identified using its morphological characteristics and through phylogenetic analysis of the internal transcribed spacer, the large subunit rDNA region, and the translation elongation factor region. The strain was identified as Neocosmospora rubicola. This species has not been previously reported in Korea. In this study, we report its isolation from the roots of Glycyrrhiza uralensis in Korea, followed by the characterization and identification of the strain.

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L

  • Khan, Abdul Latif;Hamayun, Muhammad;Ahmad, Nadeem;Hussain, Javid;Kang, Sang-Mo;Kim, Yoon-Ha;Adnan, Muhammad;Tang, Dong-Sheng;Waqas, Muhammad;Radhakrishnan, Ramalingam;Hwang, Young-Hyun;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.893-902
    • /
    • 2011
  • Endophytic fungi are little known for their role in gibberellins (GAs) synthesis and abiotic stress resistance in crop plants. We isolated 10 endophytes from the roots of field-grown soybean and screened their culture filtrates (CF) on the GAs biosynthesis mutant rice line - Waito-C. CF bioassay showed that endophyte GMH-1B significantly promoted the growth of Waito-C compared with controls. GMH-1B was identified as Penicillium minioluteum LHL09 on the basis of ITS regions rDNA sequence homology and phylogenetic analyses. GC/MS-SIM analysis of CF of P. minioluteum revealed the presence of bioactive $GA_4$ and $GA_7$. In endophyte-soybean plant interaction, P. minioluteum association significantly promoted growth characteristics (shoot length, shoot fresh and dry biomasses, chlorophyll content, and leaf area) and nitrogen assimilation, with and without sodium chloride (NaCl)-induced salinity (70 and 140 mM) stress, as compared with control. Field-emission scanning electron microcopy showed active colonization of endophyte with host plants before and after stress treatments. In response to salinity stress, low endogenous abscisic acid and high salicylic acid accumulation in endophyte-associated plants elucidated the stress mitigation by P. minioluteum. The endophytic fungal symbiosis of P. minioluteum also increased the daidzein and genistein contents in the soybean as compared with control plants, under salt stress. Thus, P. minioluteum ameliorated the adverse effects of abiotic salinity stress and rescued soybean plant growth by influencing biosynthesis of the plant's hormones and flavonoids.

Production of a Phytotoxic Compound, 3-Phenylpropionic Acid by a Bacterial Endophyte, Arthrobacter humicola YC6002 Isolated from the Root of Zoysia japonica

  • Chung, Eu-Jin;Park, Joo-Hwang;Park, Tae-Soon;Ahn, Jong-Woong;Chung, Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • An endophytic bacterial strain, Arthrobacter humicola YC6002, was isolated from a surface sterilized root of Korean turf grass (Zoysia japonica) collected from Jinju, Korea. This strain showed inhibitory effect on germination and shoot growth of radish. The inhibition of germination and shoot growth of radish seeds varied depending on the age of culture and the temperature at which it was incubated. The culture filtrate of 1/10-strength Tryptic Soy Broth medium, incubated for 48 hours at $30^{\circ}C$, showed the highest inhibitory effect on radish seed germination and shoot growth (92% inhibition as compared to control). The active compound with seed germination and shoot growth inhibition was purified and identified as 3-phenylpropionic acid. The purified compound had 53% and 93% inhibitory effect on seed germination and shoot growth of radish for 500 and 1000 ppm solutions, respectively.

Age-dependent Distribution of Fungal Endophytes in Panax ginseng Roots Cultivated in Korea

  • Park, Young-Hwan;Kim, Young-Chang;Park, Sang-Un;Lim, Hyoun-Sub;Kim, Joon-Bum;Cho, Byoung-Kwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.327-333
    • /
    • 2012
  • Fungal endophytes were isolated from 1-, 2-, 3-, and 4-year-old ginseng roots (Panax ginseng Meyer) cultivated in Korea. The isolated fungal endophytes were identified based on sequence analysis of the internal transcribed spacer and morphological characterization by microscopic observations. A total of 81 fungal endophytes were isolated from 24 ginseng roots. Fungal endophytes were classified into 9 different fungal species and 2 unknown species. Ginseng roots that were 1-, 2-, 3-, and 4-years old were colonized by 2, 6, 8, and 5 species of fungal endophytes, respectively. While Phoma radicina was the most frequent fungal endophyte in 2-, 3-, and 4-year-old ginseng roots, Fusarium solani was the dominant endophyte in 1-year-old ginseng roots. The colonization frequencies (CF) varied with the host age. The CF were 12%, 40%, 31%, and 40% for 1-, 2-, 3-, and 4-year-old ginseng roots, respectively. We found a variety of fungal endophytes that were distributed depending on the age of ginseng plants.

Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

  • Park, Sang-Un;Lim, Hyoun-Sub;Park, Kee-Choon;Park, Young-Hwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens.