• 제목/요약/키워드: Endometrial Stromal

검색결과 55건 처리시간 0.023초

Evaluation of polyglycolic acid as an animal-free biomaterial for three-dimensional culture of human endometrial cells

  • Sadegh Amiri;Zohreh Bagher;Azadeh Akbari Sene;Reza Aflatoonian;Mehdi Mehdizadeh;Peiman Broki Milan;Leila Ghazizadeh;Mahnaz Ashrafi;FatemehSadat Amjadi
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권4호
    • /
    • pp.259-269
    • /
    • 2022
  • Objective: Animal-free scaffolds have emerged as a potential foundation for consistent, chemically defined, and low-cost materials. Because of its good potential for high biocompatibility with reproductive tissues and well-characterized scaffold design, we investigated whether polyglycolic acid (PGA) could be used as an animal-free scaffold instead of natural fibrin-agarose, which has been used successfully for three-dimensional human endometrial cell culture. Methods: Isolated primary endometrial cells was cultured on fibrin-agarose and PGA polymers and evaluated various design parameters, such as scaffold porosity and mean fiber diameter. Cytotoxicity, scanning electron microscopy (SEM), and immunostaining experiments were conducted to examine cell activity on fabricated scaffolds. Results: The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and SEM results showed that endometrial cells grew and proliferated on both scaffolds. Immunostaining showed cytokeratin and vimentin expression in seeded cells after 7 days of culture. On both scaffolds, an epithelial arrangement of cultured cells was found on the top layer and stromal arrangement matrix on the bottom layer of the scaffolds. Therefore, fibrin-agarose and PGA scaffolds successfully mimicked the human endometrium in a way suitable for in vitro analysis. Conclusion: Both fibrin-agarose and PGA scaffolds could be used to simulate endometrial structures. However, because of environmental and ethical concerns and the low cost of synthetic polymers, we recommend using PGA as a synthetic polymer for scaffolding in research instead of natural biomaterials.

Predicting Lympho-Vascular Space Invasion in Endometrial Cancers with Mucinous Carcinomatous Components

  • Ilker, Selcuk;Nilufer, Cetinkaya;Firat, Cuylan Zeliha;Bulent, Ozdal;Hatice, Bayramoglu;Tayfun, Gungor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4247-4250
    • /
    • 2015
  • Objective: To determine the predictors of lympho-vascular space invasion (LVSI) in endometrial cancers which contain mucinous carcinomatous histology. Materials and Methods: Clinical and histopathological data of endometrial carcinomas with a mucinous carcinomatous component diagnosed between January 2007 and January 2014 at the Gynecologic Oncology Department of Zekai Tahir Burak Women's Health Education and Research Hospital were reviewed retrospectively. Results: Twelve patients (25.5%) were positive for LVSI and 35 (74.5%) patients were negative. Patients with LVSI were mostly staged higher than 1A. Mean age, BMI and parity were not significantly different between patient groups. Larger tumor diameter (${\geq}2cm$) (p=0.04) and elevated Ca125 and Ca-19.9 (p=0.01) levels were significant for predicting LVSI. We also found>1/2 myometrial invasion (p<0.001), cervical stromal involvement (p=0.002) and higher grade (2-3) (p=0.001) significant for predicting LVSI. In multivariate analysis we found only grade significant for predicting LVSI. Conclusions: Especially grade of tumor is a crucial factor for determining LVSI in endometrial cancers with mucinous carcinomatous components.

Progesterone과 TGF-${\beta}1$에 의해 탈락막화가 유도된 인간 자궁내막세포의 삼차원 공배양이 2-세포기 생쥐배아의 체외발달에 미치는 영향 (Effects of 3-dimensional Co-culture of Human Endometrial Cells Decidualized with Progesterone and TGF-${\beta}1$ on the Development of Mouse 2-cell Embryos In Vitro)

  • 권욱현;김휘곤;이동형;고경래;이규섭
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제35권1호
    • /
    • pp.49-60
    • /
    • 2008
  • 목 적: 자궁내막조직에서 분리한 상피세포와 기질세포를 삼차원 공배양을 통한 탈락막화 유도에서 성호르몬과 TGF-${\beta}1$의 역할을 알아보고 2-세포기 생쥐배아와 탈락막화가 유도된 자궁내막세포와의 공배양을 통하여 포배형성율, 부화율, 포배기배아의 내세포괴와 영양막세포수 및 부착율을 알아보기 위해 시행되었다. 연구방법: 인간 자궁내막조직에서 분리된 기질세포와 상피세포의 표지인자인 cytokeratin과 vimentin에 대한 면역조직 화학염색을 실시하여 분리를 확인하였으며, 성호르몬 우세환경 (progesterone, estrogen)에서 분리된 세포를 단일배양 혹은 3차원 공배양을 통하여 RT-PCR법으로 TGF-${\beta}1$, 수용체-1, -2, integrin-${\beta}3$, prolactin의 발현을 조사하였다. 배양액군을 대조군으로 하여 2-세포기 생쥐배아와 탈락막화 유도와 유도하지 않은 인간 자궁내막세포와의 공배양을 통하여 포배형성율, 부화율, 부착율과 부화된 포배의 영양막세포와 내세포괴수를 비교하였다. 결 과: 상피세포 표지인자인 cytokeratin과 기질세포 표지인자인 vimentin을 이용하여 면역조직화학염색을 한 결과 각각 95% 이상에서 양성반응을 나타내어 자궁내막조직으로부터 상피세포와 기질세포가 성공적으로 분리되었음을 확인하였다. 분리된 상피세포와 기질세포를 단일배양에서는 성호르몬의 조건에 관계없이 TGF-${\beta}1$과 수용체 type-1, type-2, integrin-${\beta}3$, prolactin mRNA가 발현되지 않았다. 공배양에서는 progesterone 우세환경일 경우 TGF-${\beta}1$ 수용체 type-2를 제외한 모든 mRNA가 발현하였으나 estrogen 우세환경에서는 TGF-${\beta}1$ 수용체 type-2와 prolactin이 발현되지 않았다. 2-세포기 생쥐배아를 배양액군, 비탈락막군 및 탈락막군으로 나누어 공배양하였을 때 포배기 발달율은 차이가 없었으나 부화율 (92%)과 부착율 (82%)은 탈락막군이 유의하게 높았으며 (p<0.05), 비탈락막군의 공배양에서 다수의 영양막세포가 투명대를 완전히 빠져나오지 않은 상태로 부착한 비정상형태를 보였다. 부화된 생쥐 포배기배아의 내세포괴수는 탈락막화에 관계없이 공배양한 포배의 내세포괴수가 유의하게 많았으며 (p<0.05), 영양막세포수는 탈락막군에서 배양액군과 비탈락막군보다 유의하게 많았다 (p<0.05). 결 론: 자궁내막조직에서 상피세포와 기질세포를 분리하여 다시 삼차원적 공배양을 통하여 progesterone (100 nM), estrogen (1 nM)과 TGF-${\beta}1$ (10 ng/ml)을 첨가하면 체외에서 탈락막화를 유도할 수 있으며, 탈락막화를 유도한 자궁내막 세포와 2-세포기 생쥐배아를 공배양하였을 때 탈락막화가 부화율, 부착율 및 영양막세포수에 유효한 영향을 미치는 것을 알 수 있었다.

인간 자궁내막에서 Cyclooxygenase-1과 -2의 주기적 발현 양상 (Cyclic Expression of Cyclooxygenase-l and -2 in Human Endometrium)

  • 박동욱;양현원;권혁찬;황경주;유정현;이치형;김세광;조동제;오기석
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제25권1호
    • /
    • pp.25-33
    • /
    • 1998
  • Cyclooxygenase (COX) is an enzyme involved in the conversion of arachidonic acid to prostaglandins (PGs), and exists in two forms, COX-1 and COX-2. COX has been reported to be involved in early implantation by secretion of PGs which causes permeability of vessels and reaction of decidual cells around the implantation site. Recently, in mice and sheep studies, COX-1 and COX-2 expression in the endometrium has been reported to be different according to implantation and stages of the estrous cycle, but expression of COX-1 and COX-2 in human endometrium during the menstrual cycle has not yet been established. The purpose of this study was to observe the variances of COX-1 and COX-2 expression by immunohistochemical staining in endometrial samples obtained from human hysterectomy specimens and biopsies of women of reproductive age according to different stages of the menstrual cycle. Also, we attempted to observe COX-1 and COX-2 expression in the epithelial and stromal cells of the endometrium obtained during the mid-secretory phase, which were cultured separately. COX-2 showed a cyclic pattern of expression according to the different stages of the menstrual cycle and was strongly expressed particularly at the mid-secretory phase which corresponds to the time of implantation. However, COX-1 tended to be increased in the early proliferative, and mid- and late secretory phases, but was also expressed in the whole menstrual cycle showing no particular pattern. In the separately cultured cells COX-1 was expressed in epithilial cells and COX-2 in the stromal cells. The above results suggest that since COX-2 is expressed at the same time as implantation and cultured cells display a specific secretory pattern, COX-2 has inductive endocrine enzyme properties and has an important effect on endometrial cells during implantation. Also, COX-2 expression in endometrial cells may be utilized as a useful marker of endometrial maturation.

  • PDF

Analysis of Lysophosphatidic Acid Receptor 1 Expression in the Uterus during the Estrous Cycle and Pregnancy in Pigs

  • Seo, Hee-Won;Kim, Min-Goo;Choi, Yo-Han;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • 제33권3호
    • /
    • pp.147-152
    • /
    • 2009
  • Lysophosphatidic acid (LPA), a simple phospholipid-derived mediator implicated in diverse biological actions, acts through the specific G-protein coupled receptors, LPA receptor (LPAR) $1{\sim}5$. Our previous study showed that LPAR3 is expressed in the uterine endometrium in a cell type- and stage-specific manner and LPA via LPAR3 increases PTGS2 expression in the uterine endometrium during the period of implantation. Although LPAR3 is considered to be predominant LPA receptor in the uterine endometrium, other LPA receptors might playa role to mediate LPA functions in the uterine endometrium during pregnancy. Among LPARs, we investigated expression of LPAR1 during the estrous cycle and pregnancy in this study. Uterine endometrial tissue samples were collected from day (D) 12 and D15 of the estrous cycle and from D12, D15, D30, D60, D90 and D114 of pregnancy. Northern blot analysis determined that LPAR1 mRNA was constitutively expressed in the uterine endometrial tissues during the estrous cycle and pregnancy of all stages. Analysis by immunoblotting revealed that LPAR1 proteins were present in the porcine uterine endometrium during the estrous cycle and pregnancy. Immunohistochemical experiments demonstrated that LP AR1 protein was localized to endometrial epithelium and stromal cell, specifically to nuclei of these cell types. Results in this study show that LPAR1 is constitutively expressed in the uterine endometrium during the estrous cycle and pregnancy. These results suggest that LPA via LPAR1 may playa role in the uterine endometrial function throughout pregnancy in pigs.

착상기 Insulin-like Growth Factor System의 역할 (The Role of the Insulin-like Growth Factor System during the Periimplantation Period)

  • 이철영
    • 한국수정란이식학회지
    • /
    • 제12권3호
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

흰쥐 자궁 상피와 내막에서 기원한 세포주의 체외배양 (In Vitro Culture of Nontransformed Cell Lines Derived from Rat Endometrial Epithelium and Stroma)

  • 강병문;이석원;채희동;강은희;추형식;김정훈;장윤석;남주현
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제26권1호
    • /
    • pp.83-87
    • /
    • 1999
  • Since the blastocyst is broken and spreads out on a flat plastic culture dish (two dimensional culture) during in vitro development, it has been difficult to study the implantation process. It also has been difficult to analyse the interactions between endometrial epithelial and stromal cells because of the lack of a long-term in vitro model which can stimulate in vivo characteristics, as these cells eventually fail to proliferate or cease to express differentiated functions. Recently nontransformed cell lines, CUE-P and CUS-V2, derived from rat endometrial epithelium and stroma were reported. In this study, morphology of CUE-P and CUS-V2 was examined and oxytocin gene expression by CUE-P cells was demonstrated by RT-PCR. The CUE-P cells have a cuboidal morphology and CUS-V2 cells resemble fibroblast and exhibit a spindle-like morphology. In RT-PCR, same size of PCR products of oxytocin gene at hypothalamus, uterus and CUE-P cells were demonstrated. These results showed three dimensional culture system could be made by using the new cell lines.

  • PDF