• 제목/요약/키워드: Endocrine hypertension

검색결과 25건 처리시간 0.029초

A Prediction Model of Blood Pressure Using Endocrine System and Autonomic Nervous System

  • Nishimura, Toshi Hiro;Saito, Masao
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1991년도 추계학술대회
    • /
    • pp.113-118
    • /
    • 1991
  • Hypertension is a medical problem with no permanent cure. Extended hypertension can cause various cardio vascular diseases, cerebral vascular diseases, and circulatory system trouble. Medical treatment at present does not consider circadian variation of blood pressure in patients ; therefore, the problem of over-reduction of blood pressure through drugs sometimes occurs. This paper presents a prediction model of circadian variation or moon blood pressure employing the endocrine grand and the autonomic nervous system.

  • PDF

Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor

  • Cha, Seung Ah;Park, Byung Mun;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.447-456
    • /
    • 2018
  • Angiotensin-(1-9) [Ang-(1-9)], generated from Ang I by Ang II converting enzyme 2, has been reported to have protective effects on cardiac and vascular remodeling. However, there is no report about the effect of Ang-(1-9) on pulmonary hypertension. The aim of the present study is to investigate whether Ang-(1-9) improves pulmonary vascular remodeling in monocrotaline (MCT)-induced pulmonary hypertensive rats. Sprague-Dawley rats received Ang-(1-9) ($576{\mu}g/kg/day$) or saline via osmotic mini-pumps for 3 weeks. Three days after implantation of osmotic mini-pumps, 50 mg/kg MCT or vehicle were subcutaneously injected. MCT caused increases in right ventricular weight and systolic pressure, which were reduced by co-administration of Ang-(1-9). Ang-(1-9) also attenuated endothelial damage and medial hypertrophy of pulmonary arterioles as well as pulmonary fibrosis induced by MCT. The protective effects of Ang-(1-9) against pulmonary hypertension were inhibited by Ang type 2 receptor ($AT_2R$) blocker, but not by Mas receptor blocker. Additionally, the levels of LDH and inflammatory cytokines, such as $TNF-{\alpha}$, MCP-1, $IL-1{\beta}$, and IL-6, in plasma were lower in Ang-(1-9) co-treated MCT group than in vehicle-treated MCT group. Changes in expressions of apoptosis-related proteins such as Bax, Bcl2, Caspase-3 and -9 in the lung tissue of MCT rats were attenuated by the treatment with Ang-(1-9). These results indicate that Ang-(1-9) improves MCT-induced pulmonary hypertension by decreasing apoptosis and inflammatory reaction via $AT_2R$.

영남대학교 의과대학 부속병원에서의 이차성 고혈압의 유병율 (Prevalene of Secondary Hypertension in Yeungnam University Hospital)

  • 권준영;최교원;신동구;이형우;윤경우;김영조;심봉섭;이현우
    • Journal of Yeungnam Medical Science
    • /
    • 제11권1호
    • /
    • pp.109-114
    • /
    • 1994
  • 이차성 고혈압은 일차성 고혈압에 비해 빈도가 매우 적지만 그 원인 인자를 교정했을때 정상 혈압으로 완치가 되거나 증상의 완화를 보일 수 있기 때문에 이차성 고혈압을 시사하는 소견들이 있을 때에는 원인을 조사하여 그에 맞는 적절한 치료를 하는 것이 매우 중요하다.

  • PDF

Emerging Genomics Technologies in Nutritional Sciences: Applications to obesity and hypertension research

  • Mouss, Naima-Moustaid;Sumithra Urs;Kim, Suyeon;Heo, Young-Ran
    • 한국영양학회:학술대회논문집
    • /
    • 한국영양학회 2002년도 춘계학술대회
    • /
    • pp.29-41
    • /
    • 2002
  • While the sequencing of several genomes was underway, several advanced techniques in genetics, molecular biology and protein chemistry emerged. Within the nutritional sciences, while the focus on nutrition education, epidemiology and public health aspects remains essential; it is crucial to incorporate the new advances in gene and protein discovery in nutritional studies. Nutrition is a discipline that has always integrated social, biochemical and physiological sciences from the studies at the molecule level to studies at the population level. For this reason, nutritionists are in a prime position to readily incorporate the current genomics approaches in nutrition research, All the available analytical techniques can and should be used in modern nutritional sciences. These include genetics, genomics, proteomics and metabolomics which also require integration and use of bioinformatics and computational methods for data analysis and management. These applications will be briefly reviewed with a primary focus on what the genomics and genetics approaches offer to nutritionists. We will use one of our research focus areas to illustrate uses of some of these applications in obesity-hypertension research. Our central hypothesis is that adipose tissue is an endocrine organ that plays a major role in obesity and related hypertension. We are primarily studying the renin angiotensin system (RAS). We provide evidence from our own studies and others for the paracrine as well as endocrine role of adipocyte-derived angiotensin II in adipocyte gene expression, adiposity and blood pressure regulation. Both cell culture studies as well as knockout and transgenic mice models are used to test our hypothesis. Genomics and proteomics technologies are currently developed to complement our physiological and molecular studies on the RAS and for a fine analysis of this system and its function in health and disease.

  • PDF

Emerging Genomics Technologies in Nutritional Sciences : Applications to Obesity and Hypertension Research

  • Moustaid-Moussa;Sumithra Urs;Kim, Suyeon;Heo, Young-Ran
    • 한국영양학회:학술대회논문집
    • /
    • 한국영양학회 2002년도 춘계 심포지움초록
    • /
    • pp.598-603
    • /
    • 2002
  • While the sequencing of several genomes was underway, several advanced techniques in genetics, molecular biology and protein chemistry emerged. Within the notritional sciences, while the focus on nutrition education, epidemiology and public health aspects remains essential; it is crucial to incorporate the new advances in gene and protein discovery in nutritional studies. Nutrition is a discipline that has always integrated social, biochemical and physiological sciences from the studies at the molecule level to studies at the population level. for this reason, nutritionists are in a prime position to readily incorporate the current genomics approaches in nutrition research. All the available analytical techniques can and should be used in modem nutritional sciences. These include genetics, genomics, proteomics and metabolomics which also require integration and use of bioinformatics and computational methods for data analysis and management. These applications will be briefly reviewed with a primary focus on what the genomics and genetics approaches offer to nutritionists. We will use one of our research focus areas to illustrate uses of some of these applications in obesity-hypertension research. Our central hypothesis is that adipose tissue is an endocrine organ that plays a major role in obesity and related hypertension. We are primarily studying the renin angiotensin system (RAS). We provide evidence from our own studies and others for the paracrine as well as endocrine role of adipocyte-derived angiotensin II in adipocyte gene expression, adiposity and blood pressure regulation. Both cell culture studies as well as knockout and transgenic mice models are used to test our hypothesis. Genomics and proteomics technologies are currently developed to complement our physiological and molecular studies on the RAS and for a fine analysis of this system and its function in health and disease.

  • PDF

Primary Aldosteronism and Cerebrovascular Diseases

  • Chen, Zheng-Wei;Hung, Chi-Sheng;Wu, Vin-Cent;Lin, Yen-Hung;TAIPAI study group
    • Endocrinology and Metabolism
    • /
    • 제33권4호
    • /
    • pp.429-434
    • /
    • 2018
  • As diagnostic techniques have advanced, primary aldosteronism (PA) has emerged as the most common cause of secondary hypertension. The excess of aldosterone caused by PA resulted in not only cardiovascular complications, including coronary artery disease, myocardial infarction, arrhythmia, and heart failure, but also cerebrovascular complications, such as stroke and transient ischemic attack. Moreover, PA is associated more closely with these conditions than is essential hypertension. In this review, we present up-to-date findings on the association between PA and cerebrovascular diseases.

Catastrophic catecholamine-induced cardiomyopathy rescued by extracorporeal membrane oxygenation in recurrent malignant pheochromocytoma

  • Min, Daniel
    • Journal of Yeungnam Medical Science
    • /
    • 제36권3호
    • /
    • pp.254-259
    • /
    • 2019
  • Pheochromocytoma (PCC) is a rare catecholamine-producing tumor with the incidence in hypertension of 0.1-0.6%. PCC crisis is an endocrine emergency that can lead to hemodynamic disturbance and organ failure such as catecholamine-induced cardiomyopathy. The circulatory collapse caused by it often requires mechanical support. The author reports an unusual case in which a patient who previously underwent surgery for malignant PCC developed catecholamine-induced cardiomyopathy, and successfully recovered using extracorporeal membrane oxygenation.

고혈압을 동반한 제2형 당뇨병 환자에서의 creatinine과 미세 단백뇨 증가 (Creatinine and microalbuminuria levels are increased in type 2 diabetic patients with hypertension)

  • 김희승;송민선;유양숙
    • Journal of Korean Biological Nursing Science
    • /
    • 제4권2호
    • /
    • pp.51-58
    • /
    • 2002
  • The purpose of this study was to identify clinical characteristics of type 2 diabetic patients with hypertension. The subjects were 209 type 2 diabetic patients who visited at the endocrine center at Kangnam St. Mary's Hospital of Catholic University in Seoul from beginning of March through the end of April in 2001. The patient's clinical laboratory data were assessed at medical record review. The data were analyzed using for t-test, $x^2$ test. The results were as follows: 1) There were no significant differences in age, body mass index, sex, family history of diabetes and oral hypoglycemic agents between hypertensive group and normotensive group, However, percentage of patients receiving insulin treatment was higher significantly in the hypertensive group. 2) Creatinine and microalbuminuria levels were higher significantly in the hypertensive group. However, fasting blood glucose levels were lower significantly in the hypertensive group. There were no significant differences in $HbA_1c$, 2-hour postprandial blood glucose, total cholesterol, triglyceride, high density lipoprotein cholesterol, lipoprotein(a) and blood urea nitrogen between two groups. Our present study supports that Creatinine and microalbuminuria levels were higher significantly in the hypertensive group.

  • PDF

Total ginsenosides suppress monocrotaline-induced pulmonary hypertension in rats: involvement of nitric oxide and mitogen-activated protein kinase pathways

  • Qin, Na;Yang, Wei;Feng, Dongxu;Wang, Xinwen;Qi, Muyao;Du, Tianxin;Sun, Hongzhi;Wu, Shufang
    • Journal of Ginseng Research
    • /
    • 제40권3호
    • /
    • pp.285-291
    • /
    • 2016
  • Background: Ginsenosides have been shown to exert beneficial pharmacological effects on the central nervous, cardiovascular, and endocrine systems. We sought to determine whether total ginsenosides (TG) inhibit monocrotaline (MCT)-induced pulmonary hypertension and to elucidate the underlying mechanism. Methods: MCT-intoxicated rats were treated with gradient doses of TG, with or without $N^G$-nitro-$\small{L}$-arginine methyl ester. The levels of molecules involving the regulation of nitric oxide and mitogen-activated protein kinase pathways were determined. Results: TG ameliorated MCT-induced pulmonary hypertension in a dose-dependent manner, as assessed by the right ventricular systolic pressure, the right ventricular hypertrophy index, and pulmonary arterial remodeling. Furthermore, TG increased the levels of pulmonary nitric oxide, endothelial nitric oxide synthase, and cyclic guanosine monophosphate. Lastly, TG increased mitogen-activated protein kinase phosphatase-1 expression and promoted the dephosphorylation of extracellular signal-regulated protein kinases 1/2, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase 1/2. Conclusion: TG attenuates MCT-induced pulmonary hypertension, which may involve in part the regulation of nitric oxide and mitogen-activated protein kinase pathways.

Understanding insomnia as systemic disease

  • Yun, Seokho;Jo, Sohye
    • Journal of Yeungnam Medical Science
    • /
    • 제38권4호
    • /
    • pp.267-274
    • /
    • 2021
  • Sleep plays a critical role in homeostasis of the body and mind. Insomnia is a disease that causes disturbances in the initiation and maintenance of sleep. Insomnia is known to affect not only the sleep process itself but also an individual's cognitive function and emotional regulation during the daytime. It increases the risk of various neuropsychiatric diseases such as depression, anxiety disorder, and dementia. Although it might appear that insomnia only affects the nervous system, it is also a systemic disease that affects several aspects of the body, such as the cardiovascular, endocrine, and immune systems; therefore, it increases the risk of various diseases such as hypertension, diabetes mellitus, and infection. Insomnia has a wide range of effects on our bodies because sleep is a complex and active process. However, a high proportion of patients with insomnia do not seek treatment, which results in high direct and indirect costs. This is attributed to the disregard of many of the negative effects of insomnia. Therefore, we expect that understanding insomnia as a systemic disease will provide an opportunity to understand the condition better and help prevent secondary impairment due to insomnia.