• Title/Summary/Keyword: Endo-alginate lyase

Search Result 3, Processing Time 0.017 seconds

Saccharification of Brown Macroalgae Using an Arsenal of Recombinant Alginate Lyases: Potential Application in the Biorefinery Process

  • Gimpel, Javier A.;Ravanal, Maria Cristina;Salazar, Oriana;Lienqueo, Maria Elena
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1671-1682
    • /
    • 2018
  • Alginate lyases (endo and exo-lyases) are required for the degradation of alginate into its constituting monomers. Efficient bioethanol production and extraction of bioactives from brown algae requires intensive use of these enzymes. Nonetheless, there are few commercial alginate lyase preparations, and their costs make them unsuitable for large scale experiments. A recombinant expression protocol has been developed in this study for producing seven endo-lyases and three exo-lyases as soluble and highly active preparations. Saccharification of alginate using 21 different endo/exo-lyase combinations shows that there is complementary enzymatic activity between some of the endo/exo pairs. This is probably due to favorable matching of their substrate biases for the different glycosidic bonds in the alginate molecule. Therefore, selection of enzymes for the best saccharification results for a given biomass should be based on screens comprising both types of lyases. Additionally, different incubation temperatures, enzyme load ratios, and enzyme loading strategies were assessed using the best four enzyme combinations for treating Macrocystis pyrifera biomass. It was shown that $30^{\circ}C$ with a 1:3 endo/exo loading ratio was suitable for all four combinations. Moreover, simultaneous loading of endo-and exo-lyases at the beginning of the reaction allowed maximum alginate saccharification in half the time than when the exo-lyases were added sequentially.

Cloning, Expression, and Characterization of a Cold-Adapted and Surfactant-Stable Alginate Lyase from Marine Bacterium Agarivorans sp. L11

  • Li, Shangyong;Yang, Xuemei;Zhang, Lan;Yu, Wengong;Han, Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.681-686
    • /
    • 2015
  • The purpose of this study was to find a cold-adapted and surfactant-stable alginate lyase as a candidate for biotechnological and industrial applications. The gene for a new alginate lyase, AlyL1, from Agarivorans sp. L11 was cloned and expressed in Escherichia coli. The recombinant AlyL1 was most active at 40℃ (1,370 U/mg). It was a cold-adapted alginate lyase, which showed 54.5% and 72.1% of maximum activity at 15℃ and 20℃, respectively. AlyL1 was an alkaliphilic enzyme and most active at pH 8.6. In addition, it showed high stability in the presence of various surfactants at a high concentration (from 0.1% to 1% (w/v)). AlyL1 was an endo-type alginate lyase that degraded both polyM and polyG blocks, yielding disaccharides and trisaccharides as the main products. This is the first report of the cloning and functional expression of a cold-adapted and surfactant-stable alginate lyase. AlyL1 might be an interesting candidate for biotechnological and industrial applications.

Homology Modeling and Characterization of Oligoalginate Lyase from the Alginolytic Marine Bacterium Sphingomonas sp. Strain MJ-3 (알긴산을 분해하는 해양미생물인 Sphingomonas sp. MJ-3 균주의 올리고알긴산 분해효소의 상동성 모델링 및 특성연구)

  • Kim, Hee Sook
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • Alginates are found in marine brown seaweeds and in extracellular biofilms secreted by some bacteria. Previously, we reported an oligoalginate lyase from Sphingomonas sp. MJ-3 (MJ3-Oal) that had an exolytic activity and protein sequence homology with endolytic polymannuronate (polyM) lyase in the N-terminal region. In this study, the MJ3-Oal was tested for both exolytic and endolytic activity by homology modeling using the crystal structure of Alg17c from Saccharophagus degradans 2-40T. The tyrosine residue at the $426^{th}$ position, which possibly formed a hydrogen bond with the substrate, was mutated to phenylalanine. The FPLC profiles showed that MJ3-Oal degraded alginate quickly to monomers as a final product through the oligmers, whereas the Tyr426Phe mutant showed only exolytic alginate lyase activity. $^1H$-NMR spectra also showed that MJ3-Oal degraded the endoglycosidic bond of polyM and polyMG (polymannuronate-guluronate) blocks. These results indicate that oligoalginate lyase from Sphingomonas sp. MJ-3 probably catalyzes the degradation of both exo- and endo-glycosidic bonds of alginate.