• Title/Summary/Keyword: End-use energy

Search Result 229, Processing Time 0.028 seconds

Cyclic behavior of extended end-plate connections with shape memory alloy bolts

  • Fanaie, Nader;Monfared, Morteza N.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.507-527
    • /
    • 2016
  • The use of shape memory alloys (SMAs) has been seriously considered in seismic engineering due to their capabilities, such as the ability to tolerate cyclic deformations and dissipate energy. Five 3-D extended end-plate connection models have been created, including one conventional connection and four connections with Nitinol bolts of four different prestress forces. Their cyclic behaviors have been investigated using the finite element method software ANSYS. Subsequently, the moment-rotation responses of the connections have been derived by subjecting them to cyclic loading based on SAC protocol. The results obtained in this research indicate that the conventional connections show residual deformations despite their high ductility and very good energy dissipation; therefore, they cannot be repaired after loading. However, while having good energy dissipation and high ductility, the connections equipped with Nitinol bolts have good recentering capability. Moreover, a connection with the mentioned specifications has been modeled, except that only the external bolts replaced with SMA bolts and assessed for seismic loading. The suggested connection shows high ductility, medium energy dissipation and very good recentering. The main objective of this research is to concentrate the deformations caused by cyclic loading on the connection in order to form super-elastic hinge in the connection by the deformations of the shape memory alloy bolts.

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites (PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성)

  • Lee, Min-Seon;Park, Jin-woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.90-98
    • /
    • 2021
  • Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.

A Node Scheduling Algorithm in Duty-Cycled Wireless Sensor Networks

  • Thi, Nga Dao;Dasgupta, Rumpa;Yoon, Seokhoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.593-594
    • /
    • 2015
  • In wireless sensor networks (WSNs), due to the very low data rate, the sleeping schedule is usually used to save consumed energy and prolong the lifetime of nodes. However, duty-cycled approach can cause a high end-to-end (E2E) delay. In this paper, we study a node scheduling algorithm in WSNs such that E2E delay meets bounded delay with a given probability. We have applied the probability theory to spot the relationship between E2E delay and node interval. Simulation result illustrates that we can create the network to achieve given delay with prior probability and high energy use efficient as well.

  • PDF

Relationship between declining oil use and electrification (탈석유화와 전기화의 관계 분석)

  • Choi, Hyo-Yeon;Kim, Sun-Young;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.119-124
    • /
    • 2014
  • After the oil crisis in 1970s, many countries have tried to reduce oil dependency. Especially, in Korea, rapid declining oil consumption has speedily brought to electrification and a surge in electricity demand. This paper attempts to estimate the relationship between declining oil use and electrification in Korea using OECD panel data covering from 1985 to 2011. To this end, random effect model and fixed effect model are employed. The increase in the ratio of energy oil to total energy consumption by 10%p leads to reduce the electricity demand by about 15%. This result can be useful information to cope with the recent crisis of electric power. In addition, industrial sector is ranked in forth the ratio of industrial electricity use to total electricity use according to the result of comparative analysis of electricity consumption by use in OECD countries. Therefore, industrial sector should be treated as the main target of demand-side management policies for electricity.

Households' willingness to pay for the residential electricity use (주택용 전력에 대한 지불의사액 분석)

  • Lim, Seul-Ye;Kim, Ho-Young;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Electricity is a basis for human existence. This paper attempts to analyze the households' willingness to pay (WTP) for the residential electricity use. The WTP for the residential electricity use can be defined as the sum of actual price of and additional WTP for it. The former is easily observed in the market, but the second is not observed and thus should be obtained through a WTP survey of households. To this end, this study conducted a survey of randomly selected 1,000 households in Korea in November 2010. The results indicate that the mean additional WTP for the residential electricity use was estimated to be KRW 11.24 per kWh. Given that the average price of residential electricity was KRW 98.07 per kWh at the time of the survey, the economic benefit from the residential electricity use was computed as KRW 109.31 per kWh. This information can be compared with the cost involved in the supply of one kWh of residential electricity.

Seismic behavior of stiffened concrete-filled double-skin tubular columns

  • Shekastehband, B.;Mohammadbagheri, S.;Taromi, A.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.577-598
    • /
    • 2018
  • The imperfect steel-concrete interface bonding is an important deficiency of the concrete-filled double skin tubular (CFDST) columns that led to separating concrete and steel surfaces under lateral loads and triggering buckling failure of the columns. To improve this issue, it is proposed in this study to use longitudinal and transverse steel stiffeners in CFDST columns. CFDST columns with different patterns of stiffeners embedded in the interior or exterior surfaces of the inner or outer tubes were analyzed under constant axial force and reversed cyclic loading. In the finite element modeling, the confinement effects of both inner and outer tubes on the compressive strength of concrete as well as the effect of discrete crack for concrete fracture were incorporated which give a realistic prediction of the seismic behavior of CFDST columns. Lateral strength, stiffness, ductility and energy absorption are evaluated based on the hysteresis loops. The results indicated that the stiffeners had determinant role on improving pinching behavior resulting from the outer tube's local buckling and opening/closing of the major tensile crack of concrete. The lateral strength, initial stiffness and energy absorption capacity of longitudinally stiffened columns with fixed-free end condition were increased by as much as 17%, 20% and 70%, respectively. The energy dissipation was accentuated up to 107% for fixed-guided end condition. The use of transverse stiffeners at the base of columns increased energy dissipation up to 35%. Axial load ratio, hollow ratio and concrete strength affecting the initial stiffness and lateral strength, had negligible effect of the energy dissipation of the columns. It was also found that the longitudinal stiffeners and transverse stiffeners have, respectively, negative and positive effects on ductility of CFDST columns. The conclusions, drawn from this study, can in turn, lead to the suggestion of some guidelines for the design of CFDST columns.

A Study on the Writing Methods for Greenhouse Gas and Energy Consumption Report (온실가스·에너지 절약보고서 작성방안에 관한 연구)

  • Lee, Je-Myo;Tho, Hyunsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.486-490
    • /
    • 2014
  • In our country, which imports 97% of the energy consumed, an energy saving policy is required. The price inflation of utility bills is caused by a steep rise in the prices of imported oil. This study aims to solve the difficulties that cause poor environmental conditions for workers in the energy services sector, and especially, to systematize energy consumption reports to manage energy goals by suggesting an example of written energy-saving reports. To this end, this research focuses on energy consumption of target facilities including office spaces in a main building and multi-use facilities of an office building. A system where all employees can participate is structured through the analysis of energy usage in the target buildings.

Turbulence Kinetic Energy Budgets of Tip Vortex Generated by a Fixed Wing (고정익 끝완류의 난류 운동에너지 분배 특성)

  • Bae, Hwang;Han, Yong Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1444-1452
    • /
    • 1999
  • The turbulence structure of e. tip vortex generated by e. fixed wing was investigated with the use of two-dimensional laser Doppler velocimetry. The velocity field, composed of circumferential end axial components, was measured on the vertical section to the vortex trail, located at 2C downstream from the wing tip in the incoming flow condition of $Re=2.24{\times}10^5$. A quasi 3-dimensional measurement technique by use of 2-dimensional LDV system was suggested for Reynolds stresses and the higher moments. The validity of this technique was confirmed with the uncertainty analysis. The budget of the turbulence kinetic energy was analyzed by those results in the radial direction of the vortex core. It is resulted that the production is to be very likely balanced with the dissipation in most range of the vortex core.

CFD Performance analysis of Micro Tubular-type hydro turbine by blade shape (블레이드 형상 변화에 따른 마이크로 튜블러 수차의 CFD 성능해석)

  • Park, Ji-Hoon;Hwang, Young-Cheol;Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.1-206.1
    • /
    • 2011
  • Recently, various developments in the area of small hydropower have being made and small hydro turbines are suitable for domestic use because it is a clean and renewable energy source. A small hydropower generator produces power by using the different water pressure levels in pipe lines and energy which was initially wasted by use of a reducing valve at the end of the pipeline is instead collected by a tubular-type hydro turbine in the generator. In this study, in order to acquire the performance of tubular-type hydro turbine applied, the output power, head, efficiency characteristics due to the different guide vane and runner vane angle are examined in detail. Moreover, influences of pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF

Solar Energy Powered Bicycle for Wireless Supervisory Control and Remote Power Management Applications

  • Chao, Chung-Hsing
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 2012
  • In this paper, a solar energy powered bicycle linked to a wireless sensor network (WSN) which monitors the transfer of solar energy to an electrical energy storage unit and an analysis of its effectiveness is proposed. In order to achieve this goal, a solar-powered bicycle with an attached ZigBee and a far-end wireless network supervisory system is setup. Experimental results prove that our prototype, solar energy powered bicycle, can achieve enough solar energy for charging a two lead-acid battery pack. As a result, the user, through use of a wireless network in the parking period can be kept aware of the data on the amount of immediate solar radiation, the degree of illumination, the ambient temperature, and electrical energy storage capacity information of the bicycle through an internet interface.