• Title/Summary/Keyword: End-to-end Delay

Search Result 762, Processing Time 0.036 seconds

A Study on the Improvement of Real-Time Traffic QoS using the Delay Guarantee Queue Service Discipline of End-to-End (종단간 지연 큐 서비스 방식을 이용한 실시간 트래픽 QoS 개선에 관한 연구)

  • 김광준;나상동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.236-247
    • /
    • 2002
  • We propose a cell-multiplexing scheme for the real-time communication service in ATM network and a new service discipline guarantee end-to-end delay based on pseudo-isochronous cell switching. The proposed scheme consists of two level frame hierarchy, upper and lower frame, which is used to assign the bandwidth and to guarantee the requested delay bound, respectively. Since the Proposed algorithm employs two level frame hierarchy, it can overcome the coupling problem which is inherent to the framing strategy It can be comparatively reduce the complexity, and still guarantee the diverse delay bounds of end-to-end. Besides, it consists of two components, traffic controller and scheduller, as the imput traffic description model and regulates the input traffic specification. The function of the traffic controller is to shape real -time traffic to have the same input pattern at every switch along the path. The end-to-end delay is bounded by the scheduller which can limit the delay variation without using per-session jitter controllers, and therefore it can decrease the required buffer size. The proposed algorithm can support the QoS's of non-real time traffic as well as those of real time traffic.

End-to-End Delay Analysis of a Dynamic Mobile Data Traffic Offload Scheme using Small-cells in HetNets

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.9-16
    • /
    • 2021
  • Recently, the traffic volume of mobile communications increases rapidly and the small-cell is one of the solutions using two offload schemes, i.e., local IP access (LIPA) and selected IP traffic offload (SIPTO), to reduce the end-to-end delay and amount of mobile data traffic in the core network (CN). However, 3GPP describes the concept of LIPA and SIPTO and there is no decision algorithm to decide the path from source nodes (SNs) to destination nodes (DNs). Therefore, this paper proposes a dynamic mobile data traffic offload scheme using small-cells to decide the path based on the SN and DN, i.e., macro user equipment, small-cell user equipment (SUE), and multimedia server, and type of the mobile data traffic for the real-time and non-real-time. Through analytical models, it is shown that the proposed offload scheme outperforms the conventional small-cell network in terms of the delay of end-to-end mobile data communications and probability of the mobile data traffic in the CN for the heterogeneous networks.

Delay-Margin based Traffic Engineering for MPLS-DiffServ Networks

  • Ashour, Mohamed;Le-Ngoc, Tho
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.351-361
    • /
    • 2008
  • This paper presents a delay-margin based traffic engineering (TE) approach to provide end-to-end quality of service (QoS) in multi-protocol label switching (MPLS) networks using differentiated services (DiffServ) at the link level. The TE, including delay, class, and route assignments, is formulated as a nonlinear optimization problem reflecting the inter-class and inter-link dependency introduced by DiffServ and end-to-end QoS requirements. Three algorithms are used to provide a solution to the problem: The first two, centralized offline route configuration and link-class delay assignment, operate in the convex areas of the feasible region to consecutively reduce the objective function using a per-link per-class decomposition of the objective function gradient. The third one is a heuristic that promotes/demotes connections at different links in order to deal with concave areas that may be produced by a trunk route usage of more than one class on a given link. Approximations of the three algorithms suitable for on-line distributed TE operation are also derived. Simulation is used to show that proposed approach can increase the number of users while maintaining end-to-end QoS requirements.

Energy-efficient Low-delay TDMA Scheduling Algorithm for Industrial Wireless Mesh Networks

  • Zuo, Yun;Ling, Zhihao;Liu, Luming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2509-2528
    • /
    • 2012
  • Time division multiple access (TDMA) is a widely used media access control (MAC) technique that can provide collision-free and reliable communications, save energy and bound the delay of packets. In TDMA, energy saving is usually achieved by switching the nodes' radio off when such nodes are not engaged. However, the frequent switching of the radio's state not only wastes energy, but also increases end-to-end delay. To achieve high energy efficiency and low delay, as well as to further minimize the number of time slots, a multi-objective TDMA scheduling problem for industrial wireless mesh networks is presented. A hybrid algorithm that combines genetic algorithm (GA) and simulated annealing (SA) algorithm is then proposed to solve the TDMA scheduling problem effectively. A number of critical techniques are also adopted to reduce energy consumption and to shorten end-to-end delay further. Simulation results with different kinds of networks demonstrate that the proposed algorithm outperforms traditional scheduling algorithms in terms of addressing the problems of energy consumption and end-to-end delay, thus satisfying the demands of industrial wireless mesh networks.

An Application Layer Multicast Performance Enhancement Scheme (응용 계층 멀티캐스트 성능 향상 기법)

  • Kim Sunghoon;Kang Kyungran;Lee Dongman;Mo Jeonghoon
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.6
    • /
    • pp.608-619
    • /
    • 2004
  • Application layer multicast(ALM) has been developed as an alternative to support the multi-receiver applications due to the slow deployment of IP multicast. Unlike routers in IP multicast, end systems participating in a ALM session are not optimized for relaying data and have various processing and network capacity. Therefore, with the increased role of end systems, the delay incurred at the end systems occupy large portion of the end-to-end delay. In this paper, we model the end system delay of ALM sessions and analyze its impact on the performance of the existing ALM schemes. Furthermore, we propose an enhanced scheme, based on the existing mesh-based scheme, which reflects the end system delay We also evaluate the performance of the proposed scheme by simulation and show that it reduces the end-to-end delay compared with the existing scheme.

Joint Relay Selection and Resource Allocation for Delay-Sensitive Traffic in Multi-Hop Relay Networks

  • Sha, Yan;Hu, Jufeng;Hao, Shuang;Wang, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3008-3028
    • /
    • 2022
  • In this paper, we investigate traffic scheduling for a delay-sensitive multi-hop relay network, and aim to minimize the priority-based end-to-end delay of different data packet via joint relay selection, subcarrier assignment, and power allocation. We first derive the priority-based end-to-end delay based on queueing theory, and then propose a two-step method to decompose the original optimization problem into two sub-problems. For the joint subcarrier assignment and power control problem, we utilize an efficient particle swarm optimization method to solve it. For the relay selection problem, we prove its convexity and use the standard Lagrange method to deal with it. The joint relay selection, subcarriers assignment and transmission power allocation problem for each hop can also be solved by an exhaustive search over a finite set defined by the relay sensor set and available subcarrier set. Simulation results show that both the proposed routing scheme and the resource allocation scheme can reduce the average end-to-end delay.

A Distributed Low-cost Dynamic Multicast Routing Algorithm with Delay Constraints (지연시간을 고려한 최소비용의 동적 멀티캐스트 라우팅 알고리즘)

  • Sin, Min-U;Im, Hyeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.4
    • /
    • pp.180-187
    • /
    • 2002
  • Many real-time multimedia applications, such as video conferencing have stringent end-to-end delay constraints and consume large amount of network resources. In order to support these applications efficiently, multicast routing algorithms computing least cost multicast trees that satisfy a given end-to-end delay constraint are needed. However, finding such a tree is known to be computationally expensive. Therefore, we propose a heuristic distributed multicast routing algorithm that reduces a “finding multicast tree”that satisfies a given end-to-end delay constraint and minimizes the average resulting tree cost. Also, simulation results show that the proposed algorithm has much better average cost performance than other existing algorithms.

Deep Reinforcement Learning-based Distributed Routing Algorithm for Minimizing End-to-end Delay in MANET (MANET에서 종단간 통신지연 최소화를 위한 심층 강화학습 기반 분산 라우팅 알고리즘)

  • Choi, Yeong-Jun;Seo, Ju-Sung;Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1267-1270
    • /
    • 2021
  • In this paper, we propose a distributed routing algorithm for mobile ad hoc networks (MANET) where mobile devices can be utilized as relays for communication between remote source-destination nodes. The objective of the proposed algorithm is to minimize the end-to-end communication delay caused by transmission failure with deep channel fading. In each hop, the node needs to select the next relaying node by considering a tradeoff relationship between the link stability and forward link distance. Based on such feature, we formulate the problem with partially observable Markov decision process (MDP) and apply deep reinforcement learning to derive effective routing strategy for the formulated MDP. Simulation results show that the proposed algorithm outperforms other baseline schemes in terms of the average end-to-end delay.

Gateway Discovery Algorithm Based on Multiple QoS Path Parameters Between Mobile Node and Gateway Node

  • Bouk, Safdar Hussain;Sasase, Iwao;Ahmed, Syed Hassan;Javaid, Nadeem
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.434-442
    • /
    • 2012
  • Several gateway selection schemes have been proposed that select gateway nodes based on a single Quality of Service (QoS) path parameter, for instance path availability period, link capacity or end-to-end delay, etc. or on multiple non-QoS parameters, for instance the combination of gateway node speed, residual energy, and number of hops, for Mobile Ad hoc NETworks (MANETs). Each scheme just focuses on the ment of improve only a single network performance, i.e., network throughput, packet delivery ratio, end-to-end delay, or packet drop ratio. However, none of these schemes improves the overall network performance because they focus on a single QoS path parameter or on set of non-QoS parameters. To improve the overall network performance, it is necessary to select a gateway with stable path, a path with themaximum residual load capacity and the minimum latency. In this paper, we propose a gateway selection scheme that considers multiple QoS path parameters such as path availability period, available capacity and latency, to select a potential gateway node. We improve the path availability computation accuracy, we introduce a feedback system to updated path dynamics to the traffic source node and we propose an efficient method to propagate QoS parameters in our scheme. Computer simulations show that our gateway selection scheme improves throughput and packet delivery ratio with less per node energy consumption. It also improves the end-to-end delay compared to single QoS path parameter gateway selection schemes. In addition, we simulate the proposed scheme by considering weighting factors to gateway selection parameters and results show that the weighting factors improve the throughput and end-to-end delay compared to the conventional schemes.