• Title/Summary/Keyword: End-to End delay

Search Result 756, Processing Time 0.022 seconds

A Comprehensive Analysis of the End-to-End Delay for Wireless Multimedia Sensor Networks

  • Abbas, Nasim;Yu, Fengqi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2456-2467
    • /
    • 2018
  • Wireless multimedia sensor networks (WMSNs) require real-time quality-of-service (QoS) guarantees to be provided by the network. The end-to-end delay is very critical metric for QoS guarantees in WMSNs. In WMSNs, due to the transmission errors incurred over wireless channels, it is difficult to obtain reliable delivery of data in conjunction with low end-to-end delay. In order to improve the end-to-end delay performance, the system has to drop few packets during network congestion. In this article, our proposal is based on optimization of end-to end delay for WMSNs. We optimize end-to-end delay constraint by assuming that each packet is allowed fixed number of retransmissions. To optimize the end-to-end delay, first, we compute the performance measures of the system, such as end-to-end delay and reliability for different network topologies (e.g., linear topology, tree topology) and against different choices of system parameters (e.g., data rate, number of nodes, number of retransmissions). Second, we study the impact of the end-to-end delay and packet delivery ratio on indoor and outdoor environments in WMSNs. All scenarios are simulated with multiple run-times by using network simulator-2 (NS-2) and results are evaluated and discussed.

Development of Coordinated Scheduling Algorithm and End-to-end Delay Analysis for CAN-based Distributed Control Systems (CAN기반 분산 제어시스템의 종단 간 지연시간 분석과 협조 스케줄링 알고리즘 개발)

  • 이희배;김홍열;김대원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.501-508
    • /
    • 2004
  • In this paper, a coordinated scheduling algorithm is proposed to reduce end-to-end delay in distributed control of systems. For the algorithm, the analysis of practical end-to-end delay in the worst case is performed priory with considering implementation of the systems. The end-to-end delay is composed of the delay caused by multi-task scheduling of operating systems, the delay caused by network communications, and the delay caused by asynchronous timing between operating systems and network communications. Through some simulation tests based on CAN(Controller Area Network), the proposed worst case end-to-end delay analysis is validated. Through the simulation tests, it is also shown that a real-time distributed control system designed to existing worst case delay cannot guarantee end-to-end time constraints. With the analysis, a coordinated scheduling algorithm is proposed here. The coordinated scheduling algorithm is focused on the reduction of the delay caused by asynchronous timing between operating systems and network communications. Online deadline assignment strategy is proposed for the scheduling. The performance enhancement of the distributed control systems by the scheduling algorithm is shown through simulation tests.

End-to-End Quality of Service Constrained Routing and Admission Control for MPLS Networks

  • Oulai, Desire;Chamberland, Steven;Pierre, Samuel
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.297-305
    • /
    • 2009
  • Multiprotocol label switching (MPLS) networks require dynamic flow admission control to guarantee end-to-end quality of service (QoS) for each Internet protocol (IP) traffic flow. In this paper, we propose to tackle the joint routing and admission control problem for the IP traffic flows in MPLS networks without rerouting already admitted flows. We propose two mathematical programming models for this problem. The first model includes end-to-end delay constraints and the second one, end-to-end packet loss constraints. These end-to-end QoS constraints are imposed not only for the new traffic flow, but also for all already admitted flows in the network. The objective function of both models is to minimize the end-to-end delay for the new flow. Numerical results show that considering end-to-end delay (or packet loss) constraints for all flows has a small impact on the flow blocking rate. Moreover, we reduces significantly the mean end-to-end delay (or the mean packet loss rate) and the proposed approach is able to make its decision within 250 msec.

Delay-Constrained Energy-Efficient Cluster-based Multi-Hop Routing in Wireless Sensor Networks

  • Huynh, Trong-Thua;Dinh-Duc, Anh-Vu;Tran, Cong-Hung
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.580-588
    • /
    • 2016
  • Energy efficiency is the main objective in the design of a wireless sensor network (WSN). In many applications, sensing data must be transmitted from sources to a sink in a timely manner. This paper describes an investigation of the trade-off between two objectives in WSN design: minimizing energy consumption and minimizing end-to-end delay. We first propose a new distributed clustering approach to determining the best clusterhead for each cluster by considering both energy consumption and end-to-end delay requirements. Next, we propose a new energy-cost function and a new end-to-end delay function for use in an inter-cluster routing algorithm. We present a multi-hop routing algorithm for use in disseminating sensing data from clusterheads to a sink at the minimum energy cost subject to an end-to-end delay constraint. The results of a simulation are consistent with our theoretical analysis results and show that our proposed performs much better than similar protocols in terms of energy consumption and end-to-end delay.

A New Method for Integrated End-to-End Delay Analysis in ATM Networks

  • Ng, Joseph Kee-Yin;Song, Shibin;Li, Chengzhi;Zhao, Wei
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.189-200
    • /
    • 1999
  • For admitting a hard real-time connection to an ATM network, it is required that the end-새둥 delays of cells belong-ing to the connection meet their deadlines without violating the guarantees already provided to the currently active connections. There are two kinds of methods to analyze the end-to-end delay in an ATM network. A decomposed method analyzes the worst case delay for each switch and then computes the total delay as the sum of the delays at individual switches. On the other hand, an integrated method analyzes all the switches involved in an inte-grated manner and derives the total delay directly. In this paper, we present an efficient and effecitive integrated method to compute the end-to-end delay. We evaluate the network performance under different system parameters and we compare the performance of the proposed method with the conventional decomposed and other integrated methods [1], [3], [5]-[9].

  • PDF

Distributed Routing Based on Minimum End-to-End Delay for OFDMA Backhaul Mobile Mesh Networks

  • Chung, Jong-Moon;Lee, Daeyoung;Park, Jong-Hong;Lim, Kwangjae;Kim, HyunJae;Kwon, Dong-Seung
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.406-413
    • /
    • 2013
  • In this paper, an orthogonal frequency division multiple access (OFDMA)-based minimum end-to-end delay (MED) distributed routing scheme for mobile backhaul wireless mesh networks is proposed. The proposed scheme selects routing paths based on OFDMA subcarrier synchronization control, subcarrier availability, and delay. In the proposed scheme, OFDMA is used to transmit frames between mesh routers using type-I hybrid automatic repeat request over multipath Rayleigh fading channels. Compared with other distributed routing algorithms, such as most forward within radius R, farthest neighbor routing, nearest neighbor routing, and nearest with forwarding progress, simulation results show that the proposed MED routing can reduce end-to-end delay and support highly reliable routing using only local information of neighbor nodes.

End-to-end Delay Analysis and On-line Global Clock Synchronization Algorithm for CAN-based Distributed Control Systems (CAN 기반 분산 제어시스템의 종단 간 지연 시간 분석과 온라인 글로벌 클럭 동기화 알고리즘 개발)

  • Lee, Hee-Bae;Kim, Hong-Ryeol;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.677-680
    • /
    • 2003
  • In this paper, the analysis of practical end-to-end delay in worst case is performed for distributed control system considering the implementation of the system. The control system delay is composed of the delay caused by multi-task scheduling of operating system, the delay caused by network communication, and the delay caused by the asynchronous between them. Through simulation tests based on CAN(Controller Area Network), the proposed end-to-end delay in worst case is validated. Additionally, online clock synchronization algorithm is proposed here for the control system. Through another simulation test, the online algorithm is proved to have better performance than offline one in the view of network bandwidth utilization.

  • PDF

An Impact Analysis of Window Mechanism and End to End Delay of Tandem Queueing Network with Constant Service Times (상수 서비스 시간을 갖는 개방형 대기행렬의 종대종 지연과 윈도우 구조의 영향 분석)

  • Rhee Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.3
    • /
    • pp.99-109
    • /
    • 2004
  • In this paper, we investigate the impact of window mechanisms on end to end delay in a series of nodes with constant service times. It is shown that arbitrary combinations of window mechanisms, each applying to an arbitrary subset of data, can be embedded on the nodes without affecting the departure instants from the system if the windows are at least as large as the number of nodes spanned. The window mechanisms are shown to have no impact on the average end to end delay of data. As the condition on the windows is a minimal necessary requirement for full parallelism, the results show that the transparent operation from viewpoint of data transmission can be achieved with minimal resources.

A Multichannel TDMA MAC Protocol to Reduce End-to-End Delay in Wireless Mesh Networks

  • Trung, Tran Minh;Mo, Jeong-Hoon
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.819-822
    • /
    • 2010
  • Supporting QoS over multihop wireless mesh networks is difficult because end-to-end delay increases quickly with the increasing number of hops. This paper introduces a novel multichannel time-division multiple-access media access control (McTMAC) protocol that can help to efficiently reduce delay over multihop networks. Performance evaluation results demonstrate that McTMAC outperforms existing alternative protocols. The max-delay can be reduced by as much as 60% by using McTMAC.

Anatomy of Delay for Voice Service in NGN

  • Lee, Hoon;Baek, Yong-Chang
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.172-175
    • /
    • 2003
  • In this paper we propose a method fur the evaluation of the quality of service for VoIP services in NGN. Specifically, let us anatomize the elements of delay of a voice connection in the network in an end-to-end manner and investigate expected value at each point. We extract the delay time in each element in the network such as gateway, network node, and terminal equipment, and estimate an upper bound fur the tolerable delay in each element.

  • PDF