• 제목/요약/키워드: End-milling system

검색결과 114건 처리시간 0.024초

기하학적 적응제어에 의한 엔드밀링머시인의 안내면 오차 규명 (Identification of guideway errors in the end milling machine using geometric adaptive control algorithm)

  • 정성종;이종원
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.163-172
    • /
    • 1988
  • 본 논문에서는 GAC방법을 이용하여 공작기계의 안내면오차를 수치제어 공작기계가 가지고 있는 가공조건의 조절 능력을 이용하여 가공오차를 보상제어 함으로써 규명(identification)할 수 있는 방법을 제시한다.

볼엔드 밀링의 절삭조건 검증시스템 (Verification System for Cutting Condition of Ball-End Milling Process)

  • 김찬봉;양민양
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.123-134
    • /
    • 1995
  • In this paper, the fast force algorithm has been studied so that it is used to calculate cutting forces and to develope the NC verification system. The NC verification using the fast force algorithm can verify excessive cutting force which is the cause of deflection and breakage of tool, and adjust the feed rate and spindle speed.

  • PDF

주축 런아웃이 절삭흔과 표면거칠기에 미치는 영향에 관한 연구 (A Study on the Spindle Run-out Effects on Cutter Mark and Surface Roughness)

  • 황영국;이춘만
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.84-91
    • /
    • 2007
  • The radial error motion of a machine tool cutter/spindle system is critical to the dimensional accuracy of the parts to be machined. This paper presents an investigation into spindle run-out effects on cutting mark and surface roughness. We experimented the effects of spindle run-out on surface roughness in flat-end milling by cutting AL 7075 workpiece in various cutting conditions. In order to analyze the effects of run-out on the surface roughness, the spindle's radial error motions was measured by mounting a sphere target onto the spindle as a reference. From the experimental results, it was found that spindle un-out makes a directive effects on surface roughness in flat-end milling.

볼 엔드밀을 이용한 금형가공에 있어서 이송 속도 최적화에 대한 연구 (A Study on Feed Rate Optimization in the Ball End-milling Process Regarding of Tool Path and Workpiece Shape)

  • 김성윤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.102-106
    • /
    • 1996
  • In the ball end-milling process of a 3-dimensional mold, it is important to select cutting conditions and tool path considering the geometrical shape of a workpiece to reduce machining time. In this study, experiments were performed to decide allowable feed rate not breaking stability of system for different geometrical shapes. It was found that downcut is more stable than upcutting in machining side wall and downward is preferable to upward in inclined part depending on the angle of the inclination and depth of cut.

  • PDF

계단형상 체적의 엔드밀 가공시 절삭력 변화 특성에 관한 연구 (Cutting Force Variation Characteristics in End Milling of Terrace Volume)

  • 맹희영
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.489-495
    • /
    • 2013
  • This study analyzed thevariation in the cutting force when the cutting area of a terrace volume is machined, which is generally left after the rough cutting of a sculptured surface. The numerically simulated results for the cutting forces are compared with cutting force measurements by considering the theoretical prediction of the cutting area formation and specific cutting volume. The variation in the cutting force is measured using a dynamometer installed on a machining center for 19 different kinds of test pieces, which are selected according to the variation in the terrace volume factor, tool diameter factor, and cutting depth factor. As a result, it is verified that the cutting forces evaluated by the numerical analysis coincide with the measured cutting forces, and it is proposed as a practical cutting force prediction model.

유연 볼 엔드밀에 의한 가공오차의 Off-line 제어 (Off-line Control of Machining Error in a Flexible Ball End Milling System)

  • 심충건;양민양
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.468-484
    • /
    • 1992
  • 본 연구에서는 기존의 유연 볼 엔드밀의 절삭력 모델을 바탕으로 자유 곡면의 정삭 가공에서 발생할 수 있는 과대 또는 과소 절삭을 방지하면서 그 가공의 효율성을 높이기 위한 볼 엔드밀의 이송 속도 결정법을 제시하고자 한다. 먼저, 자유 곡면의 가공에서 발생될 수 있는 공구의 처짐에 따른 가공오차에 대하여 볼 엔드밀 공구의 처 짐벡터와 공작물의 공구 접촉점에서의 법선벡터로 표현되는 가공오차(machining error ) 예측 모델식을 유도하였다. 본 가공오차 예측 모델식은 다시 절삭날당 가지는 이 송량의 함수로 전개되어 그 곡면의 주어진 가공 공차(machining tolerance)를 만족시 키는 이송속도를 결정하게 된다.

도정수율(搗精收率)과 성능향상(性能向上)을 위(爲)한 연구(硏究)(IV) -연삭(硏削)·마찰(磨擦)의 조합식(組合式) 정백작용(精白作用)이 정백성능(精白性能)에 미치는 영향(影響)- (Study on the Improvement of Milling Recovery and Performance (IV) -Rice Whitening Performance of the Combined Abrasive- and Friction-type Whiteners-)

  • 김삼도;정창주;노상하
    • Journal of Biosystems Engineering
    • /
    • 제7권2호
    • /
    • pp.72-85
    • /
    • 1983
  • Rice whitening is performed by basically two different whitening actions known as abrasive and frictional. The former adopted in the emery stone abrasive type whiteners and the latter in the jet-air friction type. Comparative milling yields and whitening efficiencies between the whitening system consisting of jet-air friction type whiteners only and the system consisting of both abrasive- and jet-air friction-types have not yet been rigorously defined. This study was to examine the effect of combined operations of abrasive- and jet-air friction-type rice whiteners on milling yields and whitening efficiencies. The small capacity commercial units of the abrasive- and friction-type whiteners were used for the experiments. The combinations of whitening treatments were: 1) Once in the abrasive type and then two to three times in the friction type, 2) twice in the abrasive and then two to three times in the friction type and 3) three to five times in friction type. In these tests, counter pressures for the friction type whiteners were established differently as required to get about the same degree of whitening at the end of predetermined numbers of the repeated operations. The speed of emery stone and the slot angle of the screen were also the factors varied in the abrasive type whitener. Sheukwang rice variety having 13.05% M.C. was used in the tests. The dependent variables were the milled- and head-rice recoveries and electricity consumption. The results of the study are summarized as follows: 1. It was found that in the whitening systems consisting of abrasive- and friction-type whiteners slot angle of the screen, the rotational speed of emery stone roller had significant effect on the milling yields and whitening efficiency. In general, the increase of the emery stone roller speed from 690 to 950 rpm presented a positive effect on milling yield, and one-pass abrasive milling combinations had higher milling yields than two-pass abrasive milling combinations. 2. It was apparent that if the slot angle of the screen and the speed of emery stone roller are modified and set at an optimum level, the combination whitening system consisting of abrasive- and friction-type whiteners is better than the pure frictional whitening system consisting of jet-air friction type in terms of milling yields and efficiencies. 3. In the rice whitening system consisting of abrasive- and jet-air friction-type whiteners, the best whitening performance was obtained when the slot angle of the screen and the rotational speed of emery stone roller were $45^{\circ}$ and 950rpm, respectively, for the one-pass abrasive milling combinations. However, for the two-pass abrasive mi11ing combinations, the best performance was obtained with $75^{\circ}$ of slot angle and 950 rpm of the emery stone roller speed. 4. As compared with pure frictional whitening systems, the combination systems produced more milled rice by 0.8-1.0% point and more head rice by 0.5-1.5% point, and consumed less electricity by 0.15-0.20 KwH per 100kg of milled rice when the abrasive whiteners were operated in the modified conditions as described in item 3 above. Further study is recommended to find out optimum operational and design conditions of abrasive type whiterners.

  • PDF

일정절삭력 제어를 위한 이송속도 적응제어 시스템 (Afeedrate Override Control System for the Cutting Force Regulation)

  • 김창성;박영진;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.321-327
    • /
    • 1993
  • In order to maintain the cutting force at a desired level during peripheral end milling processes in spite of variation of the depth of cut and other machining conditions, a feedrate override. Apaptive Control Constraint (ACC) system are developed. Feedrate override was accomplished by a developed MMC board and PMC interface techniques. Nonlinear model of the cutting process was linearized as an adaptive model with time varying paramrters. Integral type estimators were introduced for on-line identification of cutting and control parameters in peripheral and milling processes. Zero Order Jold (ZOH) type degital control methodology which uses pole-placement concepts was applied for the ACC system. Performance of the developed ACC system was confirmed on the vertical machining center equipped with FANUC OMC for a large amount of experiment

  • PDF

전류감시를 이용한 밀링공정에서의 절삭력적응제어시스템 (Adaptive force regulation system in the milling process by current monitoring)

  • 안동철;박영진;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.690-694
    • /
    • 1996
  • In order to regulate the cutting force at a desired level during peripheral end milling processes, a feedrate override Adaptive Control Constant system was developed. This paper presents an explicit pole-assignment PI-control law through spindle motor current monitoring and its application to cutting force regulation for feedrate optimization. An experimental set-up is constructed for the commercial CNC machining center without any major changes of the structure. A data transfer system is constructed with standard interface between an IBM compatible PC and a CNC of the machining center. Experimental results show the validity of the system.

  • PDF

볼 엔드밀을 사용한 곡면가공 시뮬레이션 시스템 개발 (Development of Simulation System Curved Surface Rendering using a Ball-end Milling)

  • 박홍석;박준학;이재종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.125-128
    • /
    • 1997
  • They use a Ball End-mill in order to manufacturing sculptured surface when making metal mold, mold, cars and aircraft. In the work of a Ball End-mill case, customers do not often satisfied with manufacturing precision. Eventually, they have to re-work for the purpose of meeting manufacturing precision. There are resulted in lots of loss, whereby, in terms of both time and costs. The reasons of tolerance reducing manufacturing precision are thermal strain, the surface is damaged because of increasing cutting force and tool wear, tool deflection etc.. We focus on, however, manufacturing precision caused due to deflection of tool.

  • PDF